期刊文献+

具有分数导数本构关系的粘弹性Timoshenko梁的静动力学行为分析 被引量:28

Quasi-Static and Dynamical Analysis for Viscoelastic Timoshenko Beam With Fractional Derivative Constitutive Relation
在线阅读 下载PDF
导出
摘要 利用粘弹性材料的三维分数导数型本构关系 ,建立粘弹性Timoshenko梁的静、动力学行为研究的数学模型 ;分析Timoshenko梁在阶跃载荷作用下的准静态力学行为 ,得出了问题的解析解 ,考察了一些材料参数对梁的挠度的影响· 基于模态函数讨论了粘弹性Timoshenko梁在横向简谐激励作用下的动力响应 。 The equations of motion governing the quasi-static and dynamical behavior of a viscoelastic Timoshenko beam are derived. The viscoelastic material is assumed to obey a three-dimensional fractional derivative constitutive relation. The quasi-static behavior of the viscoelastic Timoshenko beam under step loading is analyzed and the analytical solution is obtained. The influence of material parameters on the deflection is investigated. The dynamical response of the viscoelastic Timoshenko beam subjected to a periodic excitation is studied by means of mode shape functions. And the effect of both transverse shear and rotational inertia on the vibration of the beam is discussed.
出处 《应用数学和力学》 EI CSCD 北大核心 2002年第1期1-10,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目 (19772 0 2 7) 上海市科学技术发展基金 (98JC14 0 32 ) 上海市教委发展基金资助项目 (99A0 1)
关键词 粘弹性Timoshenko梁 分数导数型本构关系 弱奇异性Volterra积分-微分方程 动力响应 viscoelastic Timoshenko beam fractional derivative constitutive relation weakly singular Volterra integro-differential equation dynamical response
  • 相关文献

参考文献9

  • 1GemantA.Onfractional diffedrences [J].Phil mag,1938,25,(1),:92-96.
  • 2BagleyRL, TorvikPJ.On the fractioal calculus model ofviscoelasticity benavior[J].J of Rneology, 1986,30(1): 133-155.
  • 3Koeller RC, Applications ofthe fractional calculus to the theory of viscoelastity[J].JApplMech,1984,51(3) :294-298.
  • 4Rossiknin Y A.Shitikova M V.Applications of fractional calculus to dynamic problems of liltear and nonlinear hereditary mechanics of solid[ J].Appl Mech Rev, 1997, 50(1): 15-67.
  • 5Argyris J.Chaotic Vibrations of a nonlinear viscoelastic beam[J], Chaos Solitons Fractals, 1996,7 (1): 151-163.
  • 6Akoz Y, Kadioglu F.The mixed finite element nethod for the quasi-static and dynamic analysis ofviscoelastic Timoshenko beams[J].Int J Numer Mech Engng, 1999,44(5): 1909-1932.
  • 7陈立群,程昌钧.非线性粘弹性梁的动力学行为[J].应用数学和力学,2000,21(9):897-902. 被引量:20
  • 8Samko SG, Kiibas AA, Marichev O L.FractiomalIntegrals and Deri: Theory and Application[M].New York: Gordon and Breach Science Publishers,1993.
  • 9Spinelli R A.Numerocal inversion of a Laplace transform[J].SIAMJNumer Anal, 1966,3(4) :636-649.

二级参考文献1

共引文献19

同被引文献209

引证文献28

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部