Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the ...Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.展开更多
The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
Based on the thermal and velocity layer's theory,the experimental setup was established on large space atrium under nozzle outlet. A series of winter experiments were accomplished and the following conclusions cou...Based on the thermal and velocity layer's theory,the experimental setup was established on large space atrium under nozzle outlet. A series of winter experiments were accomplished and the following conclusions could be drawn. At the sunny day of winter in Shanghai,the thermal and velocity layer are similar. The height of the both layer is 10-30 mm,and the temperature gratitude is 5-10 ℃ /m. Decreasing the angle of the nozzle outlet can increase the layer height dramatically. The maximum temperature difference of the occupant zone has relation with the angle of the nozzle outlet. The less the angle of the nozzle outlet is set,the greater the temperature difference is. The occupant temperature differences at these angles of the nozzle outlet are 5.1-4.4 ℃. The velocity of the wind is 0.02 and 0.17 m/s and they can accord with design demand. So,it can decrease the temperature gratitude by about 30% and it can save 10%-15% energy consumption.展开更多
Numerical studies on transient heat transfer characteristics of air-array-jet impingement with a small jet-to-plate distance and a large temperature difference between nozzles and plate were presented.The dimensionles...Numerical studies on transient heat transfer characteristics of air-array-jet impingement with a small jet-to-plate distance and a large temperature difference between nozzles and plate were presented.The dimensionless jet-to-plate distance(H/D)was 0.2,and non-dimensional nozzle-to-nozzle spacing(S/D)was 3,4,5 and 6,respectively.It is found that the quenching time is shortened at a constant total mass flow at air jet inlet m·(m·=218.21 kg/h),and the heat transfer uniformity is deterio-rated as S/D increases.However,the adding reversed-flow nozzles can shorten the quenching time of the glass plate considerably with a modest change in the heat transfer uniformity.The results at variable m·are the same as those at a fixed m·.Furthermore,the parity and arrangement of nozzles are also discussed,It is found that an odd number of nozzles is more beneficial for transient heat transfer.Based on these results,an appropriate proposal for ultra-thin glass tempering process is presented.展开更多
Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle.A gas-liquid two-phase model for the moist gas condens...Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle.A gas-liquid two-phase model for the moist gas condensation flow was built and validated by moist nitrogen experiment of homogeneous nucleation through a transonic nozzle.The effects of carrier gas pressure on position and status of condensation onset in sonic nozzle were investigated in detail.The results show that condensation process is not easy to occur at lower carrier pressure and throat diameter.The main factors influencing condensation onset are boundary layer thickness,heat capacity of carrier gas and expansion rate.All of results can be used to further analyze the effect of condensation on mass flow-rate of sonic nozzle.展开更多
A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozz...A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Machnumbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of3.0<Ma<4.0, was shown to illustrate the present design technique. To fully validate the present design method, computational fluid dynamics(CFD) analyses were carried out to study the flow quality in the test area of the nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.展开更多
Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on...Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.展开更多
PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids,and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing ...PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids,and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing along a specific direction.In this paper,a numerical model of micropump has been proposed,and the fluidic properties of diffuser/nozzle have been simulated with ANSYS.With the method of finite-element analysis,the increased pressure drop between inlet and outlet of diffuser/nozzle induces the increment of flow rate in both diffuser and nozzle simultaneously,but the increasing rate of diffuser is faster than that of nozzle.The L/R,ratio of L(length of cone pipe) and R(radius of minimal cross section of cone pipe) plays an important role in fluidic performance of diffuser and nozzle as well,and the mean flow rate will decrease with increment of L/R.The mean flow rate reaches its peak value when L/R with the value of 10 regardless the divergence angle of diffuser or nozzle.The simulation results indicate that the fluidic properties of diffuser/nozzle can be defined by its geometric structure,and accordingly determine the efficiency of micropump.展开更多
Nozzle damping is one of the most important factors in the suppression of combustion instability in solid rocket motors.For an engineering solid rocket motor that experiences combustion instability at the end of burni...Nozzle damping is one of the most important factors in the suppression of combustion instability in solid rocket motors.For an engineering solid rocket motor that experiences combustion instability at the end of burning,a wave attenuation method is proposed to assess the nozzle damping characteristics numerically.In this method,a periodic pressure oscillation signal which frequency equals to the first acoustic mode is superimposed on a steady flow at the head end of the chamber.When the pressure oscillation is turned off,the decay rate of the pressure can be used to determine the nozzle attenuation constant.The damping characteristics of three other nozzle geometries are numerically studied with this method under the same operating condition.The results show that the convex nozzle provides more damping than the conical nozzle which in turn provides more damping than the concave nozzle.All the three nozzles have better damping effect than that of basic nozzle geometry.At last,the phase difference in the chamber is analyzed,and the numerical pressure distribution satisfies well with theoretical distribution.展开更多
The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould...The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould cavity before it solidifies. And, it’s to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal design problem of nozzle and vent locations, which is constrained by nonlinear partial differential equations and boundary and initial conditions, is introduced to describe the location selection on die casting filling process. By numerical simulation, one can compare the filling time, flow pattern and temperature field at different inlet and outlet locations, then choose the most proper locations.展开更多
A straightforward technique has been developed to quickly determine the wall contour of super/hypersonic nozzles working at multiply Mach number which share a common throat section.Mach number distribution along the c...A straightforward technique has been developed to quickly determine the wall contour of super/hypersonic nozzles working at multiply Mach number which share a common throat section.Mach number distribution along the centerline of the nozzle is specified in advance and divided into two sections,both of which are described by the b-spline function.The first section is shared by different exit Mach number nozzles.The nozzle contour is determined by the method of characteristics plus boundary layer correction.An example of this design method is employed to illustrate the technique with a computational fluid dynamics calculation.The simulation results indicate that desired Mach numbers are obtained at the nozzle exit,and the good flow quality is attained for different nozzles within δMa/Ma<±0.56% in the flow core region.This technique improves the design precision of the converging-diverging nozzle,cancels waves completely,and achieves nozzles with multiple Mach number exiting which share a common throat section.展开更多
To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures ...To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures together with the distributions of the mean velocity components for Reynolds numbers (Re) ranging from 6 213 to 13 418,nozzle-to-plate spacing (H/D) varying from 0. 20 to1. 25,respectively. Results show that the crossflow configuration is significantly different from those of large nozzle-to-plate spacing. In addition,a turning point H/D=0.50 is revealed in the profile of the normalized maximum radial velocity which is associated with the heat transfer distribution on the impingement plate.展开更多
For time-of-flight(TOF)light detection and ranging(LiDAR),a three-channel high-performance transimpedance amplifier(TIA)with high immunity to input load capacitance is presented.A regulated cascade(RGC)as the input st...For time-of-flight(TOF)light detection and ranging(LiDAR),a three-channel high-performance transimpedance amplifier(TIA)with high immunity to input load capacitance is presented.A regulated cascade(RGC)as the input stage is at the core of the complementary metal oxide semiconductor(CMOS)circuit chip,giving it more immunity to input photodiode detectors.A simple smart output interface acting as a feedback structure,which is rarely found in other designs,reduces the chip size and power consumption simultaneously.The circuit is designed using a 0.5μm CMOS process technology to achieve low cost.The device delivers a 33.87 dB?transimpedance gain at 350 MHz.With a higher input load capacitance,it shows a-3 dB bandwidth of 461 MHz,indicating a better detector tolerance at the front end of the system.Under a 3.3 V supply voltage,the device consumes 5.2 mW,and the total chip area with three channels is 402.8×597.0μm2(including the test pads).展开更多
Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the differ...Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the different positions where the contoured profile locates at are researched.The results show that the contouring configuration can reduce the aerodynamic losses of the cascade.The flat side takes advantage of a stronger decrease of the losses,compared to the contoured side.The contouring configuration can also inhibit the secondary flow.The contoured cascade in which the contouring profile starts upstream of the airfoil,ends at the middle of the airfoil has the best effect of improving secondary flow.展开更多
Many sub-products of pulsed discharge,such as ultraviolet light,strong electric fields,shock waves and active species,are effective in treating wastewater.To improve the efficiency of the discharge plasma technology i...Many sub-products of pulsed discharge,such as ultraviolet light,strong electric fields,shock waves and active species,are effective in treating wastewater.To improve the efficiency of the discharge plasma technology in removing pollutants,adding TiO2 photo-catalyst to pulsed discharges could help.A negative-pulsed-discharge system,which has nozzle discharge electrodes with or without TiO2 coating,is used to degrade azo dye Acid Orange Ⅱ,and the effects of several key conditions(maximum pulse voltage,pulse repetition frequency,initial mass concentration of Acid Orange Ⅱ initial solution pH,treatment duration,the phase of discharge,and the existence of TiO2) on the degradation are experimentally investigated.The degradation of Acid Orange Ⅱ increases with maximum pulse voltage,pulse repetition frequency,and treatment duration,and it is larger when putting the discharge electrode on the solution surface than in air or inside the solution,i.e.the discharge in gas phase is more effective than that in gas-liquid phase or liquid phase.The degradation decreases as the initial mass concentration of the solution increases.It also relates to pH and is higher at acidic conditions than at neutral or alkaline conditions.Compared to treatments without TiO2,the ones using the nozzle discharge electrode with TiO2 coated increase the degradation of Acid Orange Ⅱ by 5 %.It is concluded that the proposed system with TiO2 added in can remove Acid Orange Ⅱ from wastewater effectively.展开更多
应用Realizable k-ε湍流模型和VOF(Volume of Fraction)两相流模型对某压力旋流喷嘴进行数值研究,分析了旋流室锥角、旋流孔角度及喷嘴入口压力变化对雾化锥角、雾化粒径及分布、液滴速度分布等参数的影响。结果表明:雾化锥角受旋流室...应用Realizable k-ε湍流模型和VOF(Volume of Fraction)两相流模型对某压力旋流喷嘴进行数值研究,分析了旋流室锥角、旋流孔角度及喷嘴入口压力变化对雾化锥角、雾化粒径及分布、液滴速度分布等参数的影响。结果表明:雾化锥角受旋流室锥角的影响幅度随压力增大而减小,雾化粒径及分布受旋流室锥角影响不明显,当旋流室锥角为90°时雾化范围广且雾化稳定性好;雾化锥角随旋流孔角度增大先增后减,当角度为45°时雾化锥角最大,平均粒径及其分布更佳;当喷嘴入口压力逐渐增大时,雾化锥角与雾化粒径均逐渐减小,液滴速度区间逐渐缩小,当入口压力达到0.4 MPa时,Sauter粒径及液滴粒径分布趋于稳定,液滴速度分布最为集中。展开更多
基金Sponsored by the Natural Science Foundation of Shaanxi Province (Grant No. S2025-JC-YB-0532)the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (PF2024044)
文摘Taking a C1x motor with a backward-facing step which can generate a typical corner vortex as a reference,a numerical methodology using large eddy simulation was established in this study.Based on this methodology,the position of the backward-facing step of the motor was computed and analyzed to determine a basic configuration.Two key geometrical parameters,the head cavity angle and submerged nozzle cavity height,were subsequently introduced.Their effects on the corner vortex motion and their interactions with the acoustic pressure downstream of the backward-facing step were analyzed.The phenomena of vortex acoustic coupling and characteristics of pressure oscillations were further explored.The results show that the maximum error between the simulations and experimental data on the dominant frequency of pressure oscillations is 5.23%,which indicates that the numerical methodology built in this study is highly accurate.When the step is located at less than 5/8 of the total length of the combustion chamber,vortex acoustic coupling occurs,which can increase the pressure oscillations in the motor.Both the vorticity and the scale of vortices in the downstream step increase when the head cavity angle is greater than 24°,which increases the amplitude of the pressure oscillation by maximum 63.0%.The submerged nozzle cavity mainly affects the vortices in the cavity itself rather than those in the downstream step.When the height of the cavity increases from 10 to 20 mm,the pressure oscillation amplitude under the main frequency increases by 39.1%.As this height continues to increase,the amplitude of pressure oscillations increases but the primary frequency decreases.
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金Project(09YZ229) supported by Innovation Program of Shanghai Municipal Education Commission, ChinaProject(J50502) supported by Leading Academic Discipline of Shanghai Municipal Education Commission,China+2 种基金Project(50478113) supported by the National Natural Science Foundation of ChinaProject(2006BAJ02A05) supported by the National Key Technology R&D Program,ChinaProject(08DZ1203600) supported by the Shanghai Municipal Sciences and Technology Committee,China
文摘Based on the thermal and velocity layer's theory,the experimental setup was established on large space atrium under nozzle outlet. A series of winter experiments were accomplished and the following conclusions could be drawn. At the sunny day of winter in Shanghai,the thermal and velocity layer are similar. The height of the both layer is 10-30 mm,and the temperature gratitude is 5-10 ℃ /m. Decreasing the angle of the nozzle outlet can increase the layer height dramatically. The maximum temperature difference of the occupant zone has relation with the angle of the nozzle outlet. The less the angle of the nozzle outlet is set,the greater the temperature difference is. The occupant temperature differences at these angles of the nozzle outlet are 5.1-4.4 ℃. The velocity of the wind is 0.02 and 0.17 m/s and they can accord with design demand. So,it can decrease the temperature gratitude by about 30% and it can save 10%-15% energy consumption.
基金Natural Science Foundation of China(51335002,51905049)。
文摘Numerical studies on transient heat transfer characteristics of air-array-jet impingement with a small jet-to-plate distance and a large temperature difference between nozzles and plate were presented.The dimensionless jet-to-plate distance(H/D)was 0.2,and non-dimensional nozzle-to-nozzle spacing(S/D)was 3,4,5 and 6,respectively.It is found that the quenching time is shortened at a constant total mass flow at air jet inlet m·(m·=218.21 kg/h),and the heat transfer uniformity is deterio-rated as S/D increases.However,the adding reversed-flow nozzles can shorten the quenching time of the glass plate considerably with a modest change in the heat transfer uniformity.The results at variable m·are the same as those at a fixed m·.Furthermore,the parity and arrangement of nozzles are also discussed,It is found that an odd number of nozzles is more beneficial for transient heat transfer.Based on these results,an appropriate proposal for ultra-thin glass tempering process is presented.
基金Project(61072101)supported by the National Natural Science Foundation of ChinaProject(15JCYBJC19200)supported by Natural Science Foundation of Tianjin,China
文摘Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle.A gas-liquid two-phase model for the moist gas condensation flow was built and validated by moist nitrogen experiment of homogeneous nucleation through a transonic nozzle.The effects of carrier gas pressure on position and status of condensation onset in sonic nozzle were investigated in detail.The results show that condensation process is not easy to occur at lower carrier pressure and throat diameter.The main factors influencing condensation onset are boundary layer thickness,heat capacity of carrier gas and expansion rate.All of results can be used to further analyze the effect of condensation on mass flow-rate of sonic nozzle.
基金Project(11072264)supported by the National Natural Science Foundation of China
文摘A design method was developed to specify the profile of the continuously variable Mach-number nozzle for the supersonic wind tunnel. The controllable contour design technique was applied to obtaining the original nozzle profile, while other Machnumbers were derived from the transformation of the original profile. A design scheme, covering a Mach-number range of3.0<Ma<4.0, was shown to illustrate the present design technique. To fully validate the present design method, computational fluid dynamics(CFD) analyses were carried out to study the flow quality in the test area of the nozzle. The computed results indicate that exit uniform flow is obtained with 1.19% of the maximal Mach-number deviation at the nozzle exit. The present design method achieves the continuously variable Mach-number flow during a wind tunnel running.
基金Project(51676211) supported by the National Natural Science Foundation of ChinaProject(2017SK2253) supported by the Key R&D Plan of Hunan Province of China+1 种基金Project(2015zzts044) supported by Fundamental Research Funds for the Central Universities,ChinaProject(201606370092) supported by the China Scholarship Council
文摘Submerged gas injection into liquid leads to complex multiphase flow, in which nozzle geometries are crucial important for the operational expenditure in terms of pressure drop. The influence of the nozzle geometry on pressure drop between nozzle inlet and outlet has been experimentally studied for different gas flow rates and bath depths. Nozzles with circular, gear-like and four-leaf cross-sectional shape have been studied. The results indicate that, besides the hydraulic diameter of the outlet, the orifice area and the perimeter of the nozzle tip also play significant roles. For the same superficial gas velocity, the average pressure drop from the four-leaf-shaped geometry is the least. The influence of bath depth was found negligible. A correlation for the modified Euler number considering the pressure drop is proposed depending on nozzle geometric parameter and on the modified Froude number with the hydraulic diameter of the nozzle do as characteristic length.
基金Supported by′111′Project and Chongqing Natural Science Foundation(2006BB2043,2006BB2142)
文摘PZT-based valveless micropump is a microactuator that can be used for controlling and delivering tiny amounts of fluids,and diffuser/nozzle plays an important role when this type of micropump drives the fluid flowing along a specific direction.In this paper,a numerical model of micropump has been proposed,and the fluidic properties of diffuser/nozzle have been simulated with ANSYS.With the method of finite-element analysis,the increased pressure drop between inlet and outlet of diffuser/nozzle induces the increment of flow rate in both diffuser and nozzle simultaneously,but the increasing rate of diffuser is faster than that of nozzle.The L/R,ratio of L(length of cone pipe) and R(radius of minimal cross section of cone pipe) plays an important role in fluidic performance of diffuser and nozzle as well,and the mean flow rate will decrease with increment of L/R.The mean flow rate reaches its peak value when L/R with the value of 10 regardless the divergence angle of diffuser or nozzle.The simulation results indicate that the fluidic properties of diffuser/nozzle can be defined by its geometric structure,and accordingly determine the efficiency of micropump.
文摘Nozzle damping is one of the most important factors in the suppression of combustion instability in solid rocket motors.For an engineering solid rocket motor that experiences combustion instability at the end of burning,a wave attenuation method is proposed to assess the nozzle damping characteristics numerically.In this method,a periodic pressure oscillation signal which frequency equals to the first acoustic mode is superimposed on a steady flow at the head end of the chamber.When the pressure oscillation is turned off,the decay rate of the pressure can be used to determine the nozzle attenuation constant.The damping characteristics of three other nozzle geometries are numerically studied with this method under the same operating condition.The results show that the convex nozzle provides more damping than the conical nozzle which in turn provides more damping than the concave nozzle.All the three nozzles have better damping effect than that of basic nozzle geometry.At last,the phase difference in the chamber is analyzed,and the numerical pressure distribution satisfies well with theoretical distribution.
文摘The casting nozzle location plays an important role in die casting. Improper location results in defects, such as cold shut, air cavity, shrinkage, etc. Therefore, it’s sure that the molten metal full fills the mould cavity before it solidifies. And, it’s to be wished that no vortex occur during the filling process, because the vortex is a main source that induces gas entrapment. To get the high quality and performance product, the inlet and outlet locations must be set properly. This paper, an optimal design problem of nozzle and vent locations, which is constrained by nonlinear partial differential equations and boundary and initial conditions, is introduced to describe the location selection on die casting filling process. By numerical simulation, one can compare the filling time, flow pattern and temperature field at different inlet and outlet locations, then choose the most proper locations.
基金Project(11072264) supported by the National Natural Science Foundation of China
文摘A straightforward technique has been developed to quickly determine the wall contour of super/hypersonic nozzles working at multiply Mach number which share a common throat section.Mach number distribution along the centerline of the nozzle is specified in advance and divided into two sections,both of which are described by the b-spline function.The first section is shared by different exit Mach number nozzles.The nozzle contour is determined by the method of characteristics plus boundary layer correction.An example of this design method is employed to illustrate the technique with a computational fluid dynamics calculation.The simulation results indicate that desired Mach numbers are obtained at the nozzle exit,and the good flow quality is attained for different nozzles within δMa/Ma<±0.56% in the flow core region.This technique improves the design precision of the converging-diverging nozzle,cancels waves completely,and achieves nozzles with multiple Mach number exiting which share a common throat section.
基金National Natural Science Foundation of China(51335002)
文摘To further extend knowledge about the detailed knowledge on the crossflow characteristics in a multi-jets system under a confined space,particle image velocimetry (PIV) was employed to investigate the flow structures together with the distributions of the mean velocity components for Reynolds numbers (Re) ranging from 6 213 to 13 418,nozzle-to-plate spacing (H/D) varying from 0. 20 to1. 25,respectively. Results show that the crossflow configuration is significantly different from those of large nozzle-to-plate spacing. In addition,a turning point H/D=0.50 is revealed in the profile of the normalized maximum radial velocity which is associated with the heat transfer distribution on the impingement plate.
文摘For time-of-flight(TOF)light detection and ranging(LiDAR),a three-channel high-performance transimpedance amplifier(TIA)with high immunity to input load capacitance is presented.A regulated cascade(RGC)as the input stage is at the core of the complementary metal oxide semiconductor(CMOS)circuit chip,giving it more immunity to input photodiode detectors.A simple smart output interface acting as a feedback structure,which is rarely found in other designs,reduces the chip size and power consumption simultaneously.The circuit is designed using a 0.5μm CMOS process technology to achieve low cost.The device delivers a 33.87 dB?transimpedance gain at 350 MHz.With a higher input load capacitance,it shows a-3 dB bandwidth of 461 MHz,indicating a better detector tolerance at the front end of the system.Under a 3.3 V supply voltage,the device consumes 5.2 mW,and the total chip area with three channels is 402.8×597.0μm2(including the test pads).
文摘Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the different positions where the contoured profile locates at are researched.The results show that the contouring configuration can reduce the aerodynamic losses of the cascade.The flat side takes advantage of a stronger decrease of the losses,compared to the contoured side.The contouring configuration can also inhibit the secondary flow.The contoured cascade in which the contouring profile starts upstream of the airfoil,ends at the middle of the airfoil has the best effect of improving secondary flow.
基金Project supported by National Natural Science Foundation of China (51207089), Shang- hai Maritime University (20120097).
文摘Many sub-products of pulsed discharge,such as ultraviolet light,strong electric fields,shock waves and active species,are effective in treating wastewater.To improve the efficiency of the discharge plasma technology in removing pollutants,adding TiO2 photo-catalyst to pulsed discharges could help.A negative-pulsed-discharge system,which has nozzle discharge electrodes with or without TiO2 coating,is used to degrade azo dye Acid Orange Ⅱ,and the effects of several key conditions(maximum pulse voltage,pulse repetition frequency,initial mass concentration of Acid Orange Ⅱ initial solution pH,treatment duration,the phase of discharge,and the existence of TiO2) on the degradation are experimentally investigated.The degradation of Acid Orange Ⅱ increases with maximum pulse voltage,pulse repetition frequency,and treatment duration,and it is larger when putting the discharge electrode on the solution surface than in air or inside the solution,i.e.the discharge in gas phase is more effective than that in gas-liquid phase or liquid phase.The degradation decreases as the initial mass concentration of the solution increases.It also relates to pH and is higher at acidic conditions than at neutral or alkaline conditions.Compared to treatments without TiO2,the ones using the nozzle discharge electrode with TiO2 coated increase the degradation of Acid Orange Ⅱ by 5 %.It is concluded that the proposed system with TiO2 added in can remove Acid Orange Ⅱ from wastewater effectively.
文摘应用Realizable k-ε湍流模型和VOF(Volume of Fraction)两相流模型对某压力旋流喷嘴进行数值研究,分析了旋流室锥角、旋流孔角度及喷嘴入口压力变化对雾化锥角、雾化粒径及分布、液滴速度分布等参数的影响。结果表明:雾化锥角受旋流室锥角的影响幅度随压力增大而减小,雾化粒径及分布受旋流室锥角影响不明显,当旋流室锥角为90°时雾化范围广且雾化稳定性好;雾化锥角随旋流孔角度增大先增后减,当角度为45°时雾化锥角最大,平均粒径及其分布更佳;当喷嘴入口压力逐渐增大时,雾化锥角与雾化粒径均逐渐减小,液滴速度区间逐渐缩小,当入口压力达到0.4 MPa时,Sauter粒径及液滴粒径分布趋于稳定,液滴速度分布最为集中。