Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper propos...It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms.展开更多
A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on ...A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k,with an appropriate boundary condition.The rate equation proposed can be generalized in more sophisticated growing network models,and also extended to deal with related correlation measurements.Finally,in order to check the theoretical prediction,a numerical example was solved to demonstrate the performance of the degree correlation function.展开更多
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ...When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.展开更多
Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performa...Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performance of routing protocol by cross-layer interaction. We modified mint protocol, a routing protocol in TinyOS and proposed an enhanced version of mint called PA-mint. A transmission power control interface is added to network layer in PA-mint. When routing performance of the current network is not satisfied, PA-mint monotonically increases the transmission power via the interface we added. PA-mint is able to connect orphan nodes and robust to node mobility or key nodes failure. In the case that automatic request retransmission is employed, the number of retransmissions can be reduced by PA-mint. Results from experiments show that PA-mint increases the reliability and robustness of routing protocol by cross-layer interaction.展开更多
A new combinational technology is proposed,which is feasible to apply physical-layer network coding(PNC) to wireless fading channels by employing the harmful interference strategically.The key step of PNC is that so...A new combinational technology is proposed,which is feasible to apply physical-layer network coding(PNC) to wireless fading channels by employing the harmful interference strategically.The key step of PNC is that sources broadcast signals simultaneously without orthogonal scheduling.Naturally,the signals overlap in the free space at the receivers.Since the signals from different sources are mutual independent,rooted on this rational assumption,an enhanced joint diagonalization separation named altering row diagonalization(ARD) algorithm is exploited to separate these signals by maximizing the cost function measuring independence among them.This ARD PNC(APNC) methodology provides an innovative way to implement signal-level network coding at the presence of interference and without any priori information about channels in fading environments.In conclusions,the proposed APNC performs well with higher bandwidth utility and lower error rate.展开更多
有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点...有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.展开更多
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
基金supported by the National Natural Science Foundation of China(61573285)
文摘It is unpractical to learn the optimal structure of a big Bayesian network(BN)by exhausting the feasible structures,since the number of feasible structures is super exponential on the number of nodes.This paper proposes an approach to layer nodes of a BN by using the conditional independence testing.The parents of a node layer only belong to the layer,or layers who have priority over the layer.When a set of nodes has been layered,the number of feasible structures over the nodes can be remarkably reduced,which makes it possible to learn optimal BN structures for bigger sizes of nodes by accurate algorithms.Integrating the dynamic programming(DP)algorithm with the layering approach,we propose a hybrid algorithm—layered optimal learning(LOL)to learn BN structures.Benefitted by the layering approach,the complexity of the DP algorithm reduces to O(ρ2^n?1)from O(n2^n?1),whereρ<n.Meanwhile,the memory requirements for storing intermediate results are limited to O(C k#/k#^2 )from O(Cn/n^2 ),where k#<n.A case study on learning a standard BN with 50 nodes is conducted.The results demonstrate the superiority of the LOL algorithm,with respect to the Bayesian information criterion(BIC)score criterion,over the hill-climbing,max-min hill-climbing,PC,and three-phrase dependency analysis algorithms.
基金Project(20090162110058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(KJ101210) supported by the Foundation of Chongqing Municipal Education Committee,China Project(2009GK3010) supported by the Hunan Science & Technology Foundation,China
文摘A rate equation approach was presented for the exact computation of the three vertex degree correlations of the fixed act-size collaboration networks.Measurements of the three vertex degree correlations were based on a rate equation in the continuous degree and time approximation for the average degree of the nearest neighbors of vertices of degree k,with an appropriate boundary condition.The rate equation proposed can be generalized in more sophisticated growing network models,and also extended to deal with related correlation measurements.Finally,in order to check the theoretical prediction,a numerical example was solved to demonstrate the performance of the degree correlation function.
文摘When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves.
基金Supported by National Natural Science Foundation of P. R. China (60374072, 60434030)
文摘Lossy link is one of the unique characteristics in random-deployed sensor networks. We envision that robustness and reliability of routing cannot be ensured purely in network layer. Our idea is to enhance the performance of routing protocol by cross-layer interaction. We modified mint protocol, a routing protocol in TinyOS and proposed an enhanced version of mint called PA-mint. A transmission power control interface is added to network layer in PA-mint. When routing performance of the current network is not satisfied, PA-mint monotonically increases the transmission power via the interface we added. PA-mint is able to connect orphan nodes and robust to node mobility or key nodes failure. In the case that automatic request retransmission is employed, the number of retransmissions can be reduced by PA-mint. Results from experiments show that PA-mint increases the reliability and robustness of routing protocol by cross-layer interaction.
基金supported by the National Natural Science Foundation of China(6120118361132002)
文摘A new combinational technology is proposed,which is feasible to apply physical-layer network coding(PNC) to wireless fading channels by employing the harmful interference strategically.The key step of PNC is that sources broadcast signals simultaneously without orthogonal scheduling.Naturally,the signals overlap in the free space at the receivers.Since the signals from different sources are mutual independent,rooted on this rational assumption,an enhanced joint diagonalization separation named altering row diagonalization(ARD) algorithm is exploited to separate these signals by maximizing the cost function measuring independence among them.This ARD PNC(APNC) methodology provides an innovative way to implement signal-level network coding at the presence of interference and without any priori information about channels in fading environments.In conclusions,the proposed APNC performs well with higher bandwidth utility and lower error rate.
文摘有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.