Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involv...Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.展开更多
The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy...The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.展开更多
储能系统初始参数和运行环境的差异性,会导致电池单体荷电状态(state of charge,SOC)的不一致性,降低储能系统能量利用率。为解决上述问题,设计了基于双层极值法的锂离子电池均衡实验。采用耦合电感与Flyback变换器搭建均衡系统双层架构...储能系统初始参数和运行环境的差异性,会导致电池单体荷电状态(state of charge,SOC)的不一致性,降低储能系统能量利用率。为解决上述问题,设计了基于双层极值法的锂离子电池均衡实验。采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性;以储能电池端电压作为均衡目标,提出基于双层极值法的锂离子电池快速均衡方法;搭建电池均衡实验教学平台,设计充放电及静置均衡实验,通过仿真分析和实验数据验证所提方法的有效性。该教学实验将理论知识、实验操作及数据分析相结合,有助于提升电气工程专业相关课程实验的质量和效果。展开更多
基金supported by the National Natural Science Foundation of China(No.22375021,22235003,22261132516&22205021)the BIT Research and Innovation 265 Promoting Project(Grant No.2023YCXZ017)。
文摘Energetic compounds bearing the trinitromethyl group are garnering broad attraction as potential candidates for a new generation of high energy dense oxidizers.In this work,an effective dual modulation strategy involving both molecular isomerization and crystal morphology control was employed to design and optimize trinitromethyl-oxadiazole with improved comprehensive performance.Utilizing this dual strategy,3,5-bis(trinitromethyl)-1,2,4-oxadiazole(3)was synthesized,resulting in the formation of two distinct crystal morphologies(needle and sheet)corresponding to two crystal forms(3-a and3-b).Encouragingly,while maintaining ultra-high oxygen balance(21.73%),3 achieves impressive densities(1.97-1.98 g/cm^(3)).To our knowledge,the density of 1.98 g/cm^(3)for 3-a sets a new record among that of nitrogen-rich monocyclic compounds.Notably,practical crystal morphology prediction was creatively introduced to guide the experimental crystallization conditions of 3,increasing the impact sensitivity and friction sensitivity from 1 J to 80 N(3-a)to 10 J and 240 N(3-b),respectively.Additionally,the crystal structural analyses and theoretical calculations were conducted to elucidate the reasons of differences between 3-a and 3-b in density and stability.This work provides an efficient strategy to enhance performance of trinitromethyl derivatives,broadening the path and expanding the toolbox for energetic materials.
文摘The concept of TNT(Trinitrotoluene,C_7H_5N_3O_6)equivalence is often invoked to evaluate the performance and predict the explosion parameters of different types of explosives.However,due to its low prediction accuracy and limited application range,the use of TNT equivalence for predicting explosion parameters in a confined space is rare.Compared with explosions in free fields,the process of explosive energy release in a confined space is closely related to various factors such as oxygen balance,combustible components content,and surrounding oxygen content.Studies have shown that in a confined space,negative oxygen balance explosives react with surrounding oxygen during afterburning,resulting in additional energy release and enhanced blast effects.The mechanism of energy release during afterburning is highly complex,making it challenging to determine the TNT equivalence for blast effects in a confined space.Therefore,this remains an active area of research.In this study,internal blast experiments were conducted using TNT and three other explosives under both air and N_2(Nitrogen)conditions to obtain explosion parameters including blast wave overpressure,quasi-static pressure,and temperature.The influences of oxygen balance and external oxygen content on energy release are analyzed.The author proposes principles for determining TNT equivalence for internal explosions while verifying the accuracy of obtained blast parameters through calculations based on TNT equivalence.These findings can serve as references for predicting blast performance.
文摘储能系统初始参数和运行环境的差异性,会导致电池单体荷电状态(state of charge,SOC)的不一致性,降低储能系统能量利用率。为解决上述问题,设计了基于双层极值法的锂离子电池均衡实验。采用耦合电感与Flyback变换器搭建均衡系统双层架构,建立电池组端电压、均衡电流及占空比间的关联特性;以储能电池端电压作为均衡目标,提出基于双层极值法的锂离子电池快速均衡方法;搭建电池均衡实验教学平台,设计充放电及静置均衡实验,通过仿真分析和实验数据验证所提方法的有效性。该教学实验将理论知识、实验操作及数据分析相结合,有助于提升电气工程专业相关课程实验的质量和效果。