Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SV...Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SVM on large datasets, aiNet is an artificial immune system (AIS) inspired method to perform the automatic data compression, extract the relevant information and retain the topology of the original sample distribution. The output of aiNet is a set of antibodies for representing the input dataset in a simplified way. Then the SVM model is built in the compressed antibody network instead of the original input data. Experimental results show that the ai-SVM algorithm is effective to reduce the computing time and simplify the SVM model, and the accuracy is not decreased.展开更多
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t...The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.展开更多
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu...The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.展开更多
This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select t...This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.展开更多
In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performa...In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.展开更多
A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speec...A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speech feature sequence to make up time-aligned input patterns for SVM, and the decisions of several 2-class SVM classifiers were employed for constructing an N-class classifier. Four kinds of SVM kernel functions were compared in the experiments of speaker-independent speech recognition of mandarin digits. And the kernel of radial basis function has the highest accurate rate of 99.33%, which is better than that of the baseline system based on hidden Markov models (HMM) (97.08%). And the experiments also show that SVM can outperform HMM especially when the samples for learning were very limited.展开更多
Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel i...Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction.展开更多
The identification of activity locations in con- tinuous GPS trajectories is an essential preliminary step in obtaining person trip data and for activity-based trans- portation demand forecasting. In this research, a ...The identification of activity locations in con- tinuous GPS trajectories is an essential preliminary step in obtaining person trip data and for activity-based trans- portation demand forecasting. In this research, a two-step methodology for identifying activity stop locations is pro- posed. In the first step, an improved density-based spatial clustering of applications with noise (DBSCAN) algorithm identifies stop points and moving points; then in the second step, the support vector machines (SVMs) method distin- guishes activity stops from non-activity stops among the identified stop points. A time sequence constraint and a direction change constraint are applied as improvements to DBSCAN (yielding an improved algorithm known as C-DBSCAN). Then three major features are extracted for use in the SVMs method: stop duration, mean distance to the centroid of a cluster of points at a stop location, and the shorter of distances from current location to home and to the workplace. The proposed methodology was tested using GPS data collected from mobile phones in the Nagoya area of Japan. The C-DBSCAN algorithm achieves an accuracy of 90 % in identifying stop points in the first step, while the SVMs method is 96 % accurate in distin- guishing the locations of activity stops from non-activity stops in the second step. Compared to other variants of DBSCAN used to identify activity locations from GPS trajectories, this two-step method is generally superior.展开更多
Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machi...Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics.展开更多
In order to solve the problems of small sample over-fitting and local minima when neural networks learn online, a novel method of predicting network bandwidth based on support vector machines(SVM) is proposed. The pre...In order to solve the problems of small sample over-fitting and local minima when neural networks learn online, a novel method of predicting network bandwidth based on support vector machines(SVM) is proposed. The prediction and learning online will be completed by the proposed moving window learning algorithm(MWLA). The simulation research is done to validate the proposed method, which is compared with the method based on neural networks.展开更多
The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex...The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.展开更多
This paper focuses on the applications of the support vector machines in solving the problem of blind recovery in digital communication systems.We introduce the technique of support vector machines briefly,the develop...This paper focuses on the applications of the support vector machines in solving the problem of blind recovery in digital communication systems.We introduce the technique of support vector machines briefly,the development of blind equalization and analyze the problems which need to be resolved of the blind problems.Then the applicability of support vector machines in blind problem is highlighted and deduced.Finally,merit and shortage of blind equalization using support vector machines which is already exist to be discussed and the direction of further research is indicated.展开更多
Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy b...Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi...An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.展开更多
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie...Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.展开更多
文摘Support vector machines (SVMs) are combined with the artificial immune network (aiNet), thus forming a new hybrid ai-SVM algorithm. The algorithm is used to reduce the number of samples and the training time of SVM on large datasets, aiNet is an artificial immune system (AIS) inspired method to perform the automatic data compression, extract the relevant information and retain the topology of the original sample distribution. The output of aiNet is a set of antibodies for representing the input dataset in a simplified way. Then the SVM model is built in the compressed antibody network instead of the original input data. Experimental results show that the ai-SVM algorithm is effective to reduce the computing time and simplify the SVM model, and the accuracy is not decreased.
基金Supported by the National Natural Science Foundation of China(60473035)~~
文摘The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.
基金Hebei Province Key Research and Development Project(No.20313701D)Hebei Province Key Research and Development Project(No.19210404D)+13 种基金Mobile computing and universal equipment for the Beijing Key Laboratory Open Project,The National Social Science Fund of China(17AJL014)Beijing University of Posts and Telecommunications Construction of World-Class Disciplines and Characteristic Development Guidance Special Fund “Cultural Inheritance and Innovation”Project(No.505019221)National Natural Science Foundation of China(No.U1536112)National Natural Science Foundation of China(No.81673697)National Natural Science Foundation of China(61872046)The National Social Science Fund Key Project of China(No.17AJL014)“Blue Fire Project”(Huizhou)University of Technology Joint Innovation Project(CXZJHZ201729)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902218004)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201902024006)Industry-University Cooperation Cooperative Education Project of the Ministry of Education(No.201901197007)Industry-University Cooperation Collaborative Education Project of the Ministry of Education(No.201901199005)The Ministry of Education Industry-University Cooperation Collaborative Education Project(No.201901197001)Shijiazhuang science and technology plan project(236240267A)Hebei Province key research and development plan project(20312701D)。
文摘The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap.
文摘This paper presents a novel method for radar emitter signal recognition. First, wavelet packet transform (WPT) is introduced to extract features from radar emitter signals. Then, rough set theory is used to select the optimal feature subset with good discriminability from original feature set, and support vector machines (SVMs) are employed to design classifiers. A large number of experimental results show that the proposed method achieves very high recognition rates for 9 radar emitter signals in a wide range of signal-to-noise rates, and proves a feasible and valid method.
基金Project supported by the National Natural Science Foundation of China (Grant No 90207012).
文摘In this paper, we propose a multidimensional version of recurrent least squares support vector machines (MDRLS- SVM) to solve the problem about the prediction of chaotic system. To acquire better prediction performance, the high-dimensional space, which provides more information on the system than the scalar time series, is first reconstructed utilizing Takens's embedding theorem. Then the MDRLS-SVM instead of traditional RLS-SVM is used in the high- dimensional space, and the prediction performance can be improved from the point of view of reconstructed embedding phase space. In addition, the MDRLS-SVM algorithm is analysed in the context of noise, and we also find that the MDRLS-SVM has lower sensitivity to noise than the RLS-SVM.
文摘A method of applying support vector machine (SVM) in speech recognition was proposed, and a speech recognition system for mandarin digits was built up by SVMs. In the system, vectors were linearly extracted from speech feature sequence to make up time-aligned input patterns for SVM, and the decisions of several 2-class SVM classifiers were employed for constructing an N-class classifier. Four kinds of SVM kernel functions were compared in the experiments of speaker-independent speech recognition of mandarin digits. And the kernel of radial basis function has the highest accurate rate of 99.33%, which is better than that of the baseline system based on hidden Markov models (HMM) (97.08%). And the experiments also show that SVM can outperform HMM especially when the samples for learning were very limited.
文摘Support vector machines (SVM) have been widely used in chaotic time series predictions in recent years. In order to enhance the prediction efficiency of this method and implement it in hardware, the sigmoid kernel in SVM is drawn in a more natural way by using the fuzzy logic method proposed in this paper. This method provides easy hardware implementation and straightforward interpretability. Experiments on two typical chaotic time series predictions have been carried out and the obtained results show that the average CPU time can be reduced significantly at the cost of a small decrease in prediction accuracy, which is favourable for the hardware implementation for chaotic time series prediction.
基金supported by Grant-in-Aid for Scientific Research(No.25630215 and 26220906)from the Ministry of Education,Culture,Sports,Science,and Technology,Japanthe Japan Society for the Promotion of Science
文摘The identification of activity locations in con- tinuous GPS trajectories is an essential preliminary step in obtaining person trip data and for activity-based trans- portation demand forecasting. In this research, a two-step methodology for identifying activity stop locations is pro- posed. In the first step, an improved density-based spatial clustering of applications with noise (DBSCAN) algorithm identifies stop points and moving points; then in the second step, the support vector machines (SVMs) method distin- guishes activity stops from non-activity stops among the identified stop points. A time sequence constraint and a direction change constraint are applied as improvements to DBSCAN (yielding an improved algorithm known as C-DBSCAN). Then three major features are extracted for use in the SVMs method: stop duration, mean distance to the centroid of a cluster of points at a stop location, and the shorter of distances from current location to home and to the workplace. The proposed methodology was tested using GPS data collected from mobile phones in the Nagoya area of Japan. The C-DBSCAN algorithm achieves an accuracy of 90 % in identifying stop points in the first step, while the SVMs method is 96 % accurate in distin- guishing the locations of activity stops from non-activity stops in the second step. Compared to other variants of DBSCAN used to identify activity locations from GPS trajectories, this two-step method is generally superior.
基金supported by the National Natural Science Foundation of China under Grant No.61201024
文摘Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics.
文摘In order to solve the problems of small sample over-fitting and local minima when neural networks learn online, a novel method of predicting network bandwidth based on support vector machines(SVM) is proposed. The prediction and learning online will be completed by the proposed moving window learning algorithm(MWLA). The simulation research is done to validate the proposed method, which is compared with the method based on neural networks.
文摘The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.
基金supported in part by the National Natural Science Foundation of China(No.60772060 )the project of NJUPT(No.NY207056)
文摘This paper focuses on the applications of the support vector machines in solving the problem of blind recovery in digital communication systems.We introduce the technique of support vector machines briefly,the development of blind equalization and analyze the problems which need to be resolved of the blind problems.Then the applicability of support vector machines in blind problem is highlighted and deduced.Finally,merit and shortage of blind equalization using support vector machines which is already exist to be discussed and the direction of further research is indicated.
文摘Multivariables, strong coupling, nonlinearity, and large delays characterize the boiler-turbine coordinated control systems for ship power equipment. To better deal with these conditions, a compound control strategy based on a support vector machine (SVM) with inverse identification was proposed and applied to research simulating coordinated control systems. This method combines SVM inverse control and fuzzy control, taking advantage of the merits of SVM inverse controls which can be designed easily and have high reliability, and those of fuzzy controls, which respond rapidly and have good anti-jamming capability and robustness. It ensures the controller can be controlled with near instantaneous adjustments to maintain a steady state, even if the SVM is not trained well. The simulation results show that the control quality of this fuzzy-SVM compound control algorithm is high, with good performance in dynamic response speed, static stability, restraint of overshoot, and robustness.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金supported by the National Basic Research Program Project of China(No.2010CB732004)the National Natural Science Foundation Project of China(Nos.50934006 and41272304)+2 种基金the Graduated Students’ResearchInnovation Fund Project of Hunan Province of China(No.CX2011B119)the Scholarship Award for Excellent Doctoral Student of Ministry of Education of China and the Valuable Equipment Open Sharing Fund of Central South University(No.1343-76140000022)
文摘An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research.
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
基金financially supported by the National Natural Science Foundation of China (41774129, 41904116)the Foundation Research Project of Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation (MTy2019-20)。
文摘Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.