针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其...针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。展开更多
振动信号是风电机组数据采集与监视控制(supervisorycontrol and data acquisition,SCADA)系统中的一类重要变量。对振动信号的建模和分析可以实现对机组重要部件如塔架、传动链、叶轮等的状态监测工作。采用非线性状态估计技术(nonline...振动信号是风电机组数据采集与监视控制(supervisorycontrol and data acquisition,SCADA)系统中的一类重要变量。对振动信号的建模和分析可以实现对机组重要部件如塔架、传动链、叶轮等的状态监测工作。采用非线性状态估计技术(nonlinear state estimate technique,NSET)作为建模方法,在对风电机组塔架振动特性及其影响因素进行细致分析的基础上,建立了塔架振动模型。该模型由额定风速以下和额定风速以上两部分子模型构成。同时,对非线性状态估计技术的物理意义及特点进行了深入的分析和探讨。在某风电机组2006年4至6月份SCADA数据的基础上,建立了覆盖其正常工作状态的塔架振动模型,并对该模型进行了验证。研究表明,基于NSET的塔架振动建模方法具有方法简单、物理意义明确和建模精度高等优点,为后续拟开展的风电机组振动状态监测和早期故障诊断打下了良好的基础,同时为风电机组振动分析提供了新的思路。展开更多
当前配电网地理信息系统(geographical information system,GIS)与数据采集监控系统(supenvisory control and data acquisiton,SCADA)的集成策略存在着功能重复、数据描述及界面不统一等问题。通过对2系统的功能结构进行分析,引进组件...当前配电网地理信息系统(geographical information system,GIS)与数据采集监控系统(supenvisory control and data acquisiton,SCADA)的集成策略存在着功能重复、数据描述及界面不统一等问题。通过对2系统的功能结构进行分析,引进组件对象模型技术,对各个功能模块在底层开发平台上进行集成,避免了重复开发,还提供了开放的子接口以便进行灵活的二次开发。对集成系统数据库的结构进行了分析,利用ActiveX数据对象技术等对数据库进行统一管理,GIS与SCADA等子系统之间基于平台接口函数直接交换数据,实现了无缝连接,保证了数据的一致性和系统的实时性。展开更多
根据来自监视控制与数据采集(supervisory control and data acquisition,SCADA)系统和相量测量单元(phasor measurement unit,PMU)的数据特点,提出了一种基于SCADA/PMU混合量测的广域动态实时状态估计方法,该方法充分利用了各节点间电...根据来自监视控制与数据采集(supervisory control and data acquisition,SCADA)系统和相量测量单元(phasor measurement unit,PMU)的数据特点,提出了一种基于SCADA/PMU混合量测的广域动态实时状态估计方法,该方法充分利用了各节点间电压变化的相互联系,通过SCADA系统提供的初始值和安装PMU的节点的电压量测可简单地获得其他未安装PMU节点的电压相量。该方法有效地解决了在PMU配置不足的情况下如何观测电网状态以及如何在动态过程下实时观测电网。最后,通过对新英格兰10机39节点系统的多种故障进行仿真,验证了该方法的有效性和准确性。展开更多
文摘针对复杂多变的工作环境给风电机组状态监测带来的挑战,提出了一种基于深度学习和注意力机制组合的状态监测与健康评估方法。首先,将风电机组数据采集与监控(supervisory control and data acquisition,简称SCADA)系统数据进行预处理;其次,将卷积神经网络(convolutional neural networks,简称CNN)和长短期记忆网络(long short-term memory,简称LSTM)相结合提取数据的时空特征,并引入注意力机制(Attention)为LSTM分配相应的权重;然后,利用指数加权移动平均来设置阈值,通过分析均方根误差实现风电机组的状态监测;最后,通过实例对风电机组的主轴承、发电机定子和叶片变桨电机状态进行监测分析和健康评估,验证该方法的有效性。
文摘振动信号是风电机组数据采集与监视控制(supervisorycontrol and data acquisition,SCADA)系统中的一类重要变量。对振动信号的建模和分析可以实现对机组重要部件如塔架、传动链、叶轮等的状态监测工作。采用非线性状态估计技术(nonlinear state estimate technique,NSET)作为建模方法,在对风电机组塔架振动特性及其影响因素进行细致分析的基础上,建立了塔架振动模型。该模型由额定风速以下和额定风速以上两部分子模型构成。同时,对非线性状态估计技术的物理意义及特点进行了深入的分析和探讨。在某风电机组2006年4至6月份SCADA数据的基础上,建立了覆盖其正常工作状态的塔架振动模型,并对该模型进行了验证。研究表明,基于NSET的塔架振动建模方法具有方法简单、物理意义明确和建模精度高等优点,为后续拟开展的风电机组振动状态监测和早期故障诊断打下了良好的基础,同时为风电机组振动分析提供了新的思路。
文摘当前配电网地理信息系统(geographical information system,GIS)与数据采集监控系统(supenvisory control and data acquisiton,SCADA)的集成策略存在着功能重复、数据描述及界面不统一等问题。通过对2系统的功能结构进行分析,引进组件对象模型技术,对各个功能模块在底层开发平台上进行集成,避免了重复开发,还提供了开放的子接口以便进行灵活的二次开发。对集成系统数据库的结构进行了分析,利用ActiveX数据对象技术等对数据库进行统一管理,GIS与SCADA等子系统之间基于平台接口函数直接交换数据,实现了无缝连接,保证了数据的一致性和系统的实时性。
文摘根据来自监视控制与数据采集(supervisory control and data acquisition,SCADA)系统和相量测量单元(phasor measurement unit,PMU)的数据特点,提出了一种基于SCADA/PMU混合量测的广域动态实时状态估计方法,该方法充分利用了各节点间电压变化的相互联系,通过SCADA系统提供的初始值和安装PMU的节点的电压量测可简单地获得其他未安装PMU节点的电压相量。该方法有效地解决了在PMU配置不足的情况下如何观测电网状态以及如何在动态过程下实时观测电网。最后,通过对新英格兰10机39节点系统的多种故障进行仿真,验证了该方法的有效性和准确性。