以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融...以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。展开更多
基于TSMC 0.13μm CMOS工艺设计了一款适用于无线传感网络、工作频率为300~400 MHz的两级功率放大器。功率放大器驱动级采用共源共栅结构,输出级采用了3-stack FET结构,采用线性化技术改进传统偏置电路,提高了功率放大器线性度。电源电...基于TSMC 0.13μm CMOS工艺设计了一款适用于无线传感网络、工作频率为300~400 MHz的两级功率放大器。功率放大器驱动级采用共源共栅结构,输出级采用了3-stack FET结构,采用线性化技术改进传统偏置电路,提高了功率放大器线性度。电源电压为3.6 V,芯片面积为0.31 mm×0.35 mm。利用Cadence Spectre RF软件工具对所设计的功率放大器电路进行仿真,结果表明,工作频率为350 MHz时,功率放大器的饱和输出功率为24.2 d Bm,最大功率附加效率为52.5%,小信号增益达到38.15 d B。在300~400 MHz频带内功率放大器的饱和输出功率大于23.9 d Bm,1 d B压缩点输出功率大于22.9 d Bm,最大功率附加效率大于47%,小信号增益大于37 d B,增益平坦度小于±0.7 d B。展开更多
为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dim...为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。展开更多
文摘以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。
文摘为了解决单个神经网络预测的局限性和时间序列的波动性,提出了一种奇异谱分析(singular spectrum analysis,SSA)和Stacking框架相结合的短期负荷预测方法。利用随机森林筛选出与历史负荷相关性强烈的特征因素,采用SSA为负荷数据降噪,简化模型计算过程;基于Stacking框架,结合长短期记忆(long and short-term memory,LSTM)-自注意力机制(self-attention mechanism,SA)、径向基(radial base functions,RBF)神经网络和线性回归方法集成新的组合模型,同时利用交叉验证方法避免模型过拟合;选取PJM和澳大利亚电力负荷数据集进行验证。仿真结果表明,与其他模型比较,所提模型预测精度高。
文摘基于TSMC 0.13μm CMOS工艺设计了一款适用于无线传感网络、工作频率为300~400 MHz的两级功率放大器。功率放大器驱动级采用共源共栅结构,输出级采用了3-stack FET结构,采用线性化技术改进传统偏置电路,提高了功率放大器线性度。电源电压为3.6 V,芯片面积为0.31 mm×0.35 mm。利用Cadence Spectre RF软件工具对所设计的功率放大器电路进行仿真,结果表明,工作频率为350 MHz时,功率放大器的饱和输出功率为24.2 d Bm,最大功率附加效率为52.5%,小信号增益达到38.15 d B。在300~400 MHz频带内功率放大器的饱和输出功率大于23.9 d Bm,1 d B压缩点输出功率大于22.9 d Bm,最大功率附加效率大于47%,小信号增益大于37 d B,增益平坦度小于±0.7 d B。
文摘为了提升入侵检测的准确率,鉴于自编码器在学习特征方面的优势以及残差网络在构建深层模型方面的成熟应用,提出一种基于特征降维的改进残差网络入侵检测模型(improved residual network intrusion detection model based on feature dimensionality reduction,IRFD),进而缓解传统机器学习入侵检测模型的低准确率问题。IRFD采用堆叠降噪稀疏自编码器策略对数据进行降维,从而提取有效特征。利用卷积注意力机制对残差网络进行改进,构建能提取关键特征的分类网络,并利用两个典型的入侵检测数据集验证IRFD的检测性能。实验结果表明,IRFD在数据集UNSW-NB15和CICIDS 2017上的准确率均达到99%以上,且F1-score分别为99.5%和99.7%。与基线模型相比,提出的IRFD在准确率、精确率和F1-score性能上均有较大提升。