The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controller...The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controllers for uncertain nonlinear dynamical systems is proposed. By such feedback controllers, the exponential stability of uncertain nonlinear dynamical systems can be guaranteed. The approach can give a clear insight to system analysis. An illustrative example is given to demonstrate the utilization of the approach developed. Simulation results show that the method presented is practical and effective.展开更多
The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematica...The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.展开更多
基金This project was supported by the National Natural Science Foundation of China (No. 69674109).
文摘The robust stabilization of nonlinear systems with mismatched uncertainties is investigated. Based on the stability of the nominal system, a new approach to synthesizing a class of continuous state feedback controllers for uncertain nonlinear dynamical systems is proposed. By such feedback controllers, the exponential stability of uncertain nonlinear dynamical systems can be guaranteed. The approach can give a clear insight to system analysis. An illustrative example is given to demonstrate the utilization of the approach developed. Simulation results show that the method presented is practical and effective.
基金Supported by Natural Science Foundation of Zhejiang Province P. R. China (Y105141)Natural Science Foundation of Fujian Province P.R.China (A0510025)Technological Project of Zhejiang Education Department,P. R. China(20050291)
文摘The construction of control Lyapunov functions for a class of nonlinear systems is considered. We develop a method by which a control Lyapunov function for the feedback linearizable part can be constructed systematically via Lyapunov equation. Moreover, by a control Lyapunov function of the feedback linearizable part and a Lyapunov function of the zero dynamics, a control Lyapunov function for the overall nonlinear system is established.