期刊文献+
共找到688篇文章
< 1 2 35 >
每页显示 20 50 100
Prediction Model of Soil Nutrients Loss Based on Artificial Neural Network
1
作者 WANG Zhi-liang,FU Qiang,LIANG Chuan (Hydroelectric College,Sichuan University) 《Journal of Northeast Agricultural University(English Edition)》 CAS 2001年第1期37-42,共6页
On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Mal... On the basis of Artificial Neural Network theory, a back propagation neural network with one middle layer is building in this paper, and its algorithms is also given, Using this BP network model, study the case of Malian-River basin. The results by calculating show that the solution based on BP algorithms are consis- tent with those based multiple - variables linear regression model. They also indicate that BP model in this paper is reasonable and BP algorithms are feasible. 展开更多
关键词 SOIL prediction Model of Soil Nutrients Loss Based on artificial neural network
在线阅读 下载PDF
Semi-autogenous mill power prediction by a hybrid neural genetic algorithm 被引量:2
2
作者 Hoseinian Fatemeh Sadat Abdollahzadeh Aliakbar Rezai Bahram 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期151-158,共8页
There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill l... There are few methods of semi-autogenous(SAG)mill power prediction in the full-scale without using long experiments.In this work,the effects of different operating parameters such as feed moisture,mass flowrate,mill load cell mass,SAG mill solid percentage,inlet and outlet water to the SAG mill and work index are studied.A total number of185full-scale SAG mill works are utilized to develop the artificial neural network(ANN)and the hybrid of ANN and genetic algorithm(GANN)models with relations of input and output data in the full-scale.The results show that the GANN model is more efficient than the ANN model in predicting SAG mill power.The sensitivity analysis was also performed to determine the most effective input parameters on SAG mill power.The sensitivity analysis of the GANN model shows that the work index,inlet water to the SAG mill,mill load cell weight,SAG mill solid percentage,mass flowrate and feed moisture have a direct relationship with mill power,while outlet water to the SAG mill has an inverse relationship with mill power.The results show that the GANN model could be useful to evaluate a good output to changes in input operation parameters. 展开更多
关键词 semi-autogenous mill mill power prediction sensitivity analysis artificial neural network genetic algorithm
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
3
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
Prediction of resilient modulus for subgrade soils based on ANN approach 被引量:11
4
作者 ZHANG Jun-hui HU Jian-kun +2 位作者 PENG Jun-hui FAN Hai-shan ZHOU Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期898-910,共13页
The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soil... The resilient modulus(MR)of subgrade soils is usually used to characterize the stiffness of subgrade and is a crucial parameter in pavement design.In order to determine the resilient modulus of compacted subgrade soils quickly and accurately,an optimized artificial neural network(ANN)approach based on the multi-population genetic algorithm(MPGA)was proposed in this study.The MPGA overcomes the problems of the traditional ANN such as low efficiency,local optimum and over-fitting.The developed optimized ANN method consists of ten input variables,twenty-one hidden neurons,and one output variable.The physical properties(liquid limit,plastic limit,plasticity index,0.075 mm passing percentage,maximum dry density,optimum moisture content),state variables(degree of compaction,moisture content)and stress variables(confining pressure,deviatoric stress)of subgrade soils were selected as input variables.The MR was directly used as the output variable.Then,adopting a large amount of experimental data from existing literature,the developed optimized ANN method was compared with the existing representative estimation methods.The results show that the developed optimized ANN method has the advantages of fast speed,strong generalization ability and good accuracy in MR estimation. 展开更多
关键词 resilient modulus subgrade soils artificial neural network multi-population genetic algorithm prediction method
在线阅读 下载PDF
人工神经网络算法下的产品造型意象预测模型 被引量:1
5
作者 陈国强 支梦帆 +1 位作者 申正义 顾紫轩 《机械设计与制造》 北大核心 2025年第7期278-284,289,共8页
从用户情感出发,对产品造型特征与目标用户情感意象的匹配关系进行研究。以救援挖掘机为设计对象,运用问卷调研法、语义差异法、聚类分析等方法获取用户评价指标与优势样本。通过决策树方法推理得到产品造型特征要素,针对样本进行造型... 从用户情感出发,对产品造型特征与目标用户情感意象的匹配关系进行研究。以救援挖掘机为设计对象,运用问卷调研法、语义差异法、聚类分析等方法获取用户评价指标与优势样本。通过决策树方法推理得到产品造型特征要素,针对样本进行造型因子的解构与提取。构建产品造型因子编码矩阵与用户情感意象评价矩阵,搭建产品造型意象人工神经网络(ANN)预测模型,实现产品造型特征与用户情感意象之间的非线性映射关系,通过对比多元线性回归预测模型验证其优势性。根据产品造型意象人工神经网络预测模型推荐造型因子进行设计实践,验证方法的可行性,为特种车辆类产品造型的优化设计提供参考。 展开更多
关键词 人工神经网络(ANN) 造型优化设计 产品意象预测
在线阅读 下载PDF
川滇地区人工智能地震预测模型应用
6
作者 孟令媛 胡峰 +7 位作者 臧阳 司旭 闫伟 田雷 赵小艳 张致伟 韩颜颜 王月 《地震研究》 北大核心 2026年第1期43-50,共8页
针对中国地震科学实验场的科学目标和主要科学问题,基于川滇地区地震目录和地球物理观测数据,在对川滇地区进行区域划分并建立图神经网络的基础上,构建了川滇地区地震预测模型。该模型综合考虑约3万条地震目录数据、基于地震目录的3种... 针对中国地震科学实验场的科学目标和主要科学问题,基于川滇地区地震目录和地球物理观测数据,在对川滇地区进行区域划分并建立图神经网络的基础上,构建了川滇地区地震预测模型。该模型综合考虑约3万条地震目录数据、基于地震目录的3种地震活动性参数,以及116台项地球物理观测数据,通过将传统经验预测指标方法与人工智能技术结合,给出了适用于川滇地区的多源异构数据图神经网络地震预测模型,实现了川滇地区不同数据源下短期与中期地震预测功能。模型应用结果显示,在CD2、CD8和CD10区域月尺度预测效果较好,年尺度无震预测有一定对应效果。 展开更多
关键词 中国地震科学实验场 多源异构数据 图神经网络 地震预测模型 川滇地区
在线阅读 下载PDF
应用机器学习算法预测樟子松树皮厚度 被引量:1
7
作者 谌俊燃 张兹鹏 姜立春 《中南林业科技大学学报》 北大核心 2025年第2期82-90,共9页
【目的】研究传统模型和机器学习算法预测樟子松Pinus sylvestris var.mongolica的树皮厚度,为树皮厚度的精准预测提供理论依据和实践指导。【方法】以大兴安岭图强林业局245株樟子松伐倒木数据为研究对象,构建6个传统模型(线性、非线性... 【目的】研究传统模型和机器学习算法预测樟子松Pinus sylvestris var.mongolica的树皮厚度,为树皮厚度的精准预测提供理论依据和实践指导。【方法】以大兴安岭图强林业局245株樟子松伐倒木数据为研究对象,构建6个传统模型(线性、非线性)和2种机器学习模型(人工神经网络ANN、支持向量回归SVR),同时比较不同自变量组合时机器学习模型的表现。【结果】(1)树皮厚度的拟合和检验结果均表明2种机器学习模型均优于传统模型,具体结果排序为SVR6>ANN6>M5;(2)SVR6的最优输入变量组合为胸径、树高、距离地面高度和相对高。与传统模型M5相比,SVR6的预测精度有明显提高,其中R2提高了12.66%,RMSE和MAE分别降低了17.71%和20.27%;(3)将数据划分为不同径阶组合分析各模型的预测精度时,发现2种机器学习模型(ANN6、SVR6)的预测效果均优于传统模型M5。其中,当树木为小径阶(5 cm≤DBH<15 cm)和大径阶(DBH≥25 cm)时,建议采用SVR6进行预测;当树木多为中等径阶(15 cm≤DBH<25 cm)时,建议采用ANN6进行预测;(4)比较各模型在树干不同高度的预测能力时,发现在相对高0~70%处,ANN6和SVR6的预测能力较优;在相对高70%~100%处,M5的预测能力较优。总体来看,ANN6和SVR6在大部分高度处的预测能力都优于M5。【结论】机器学习建模方法可以有效地提高树皮厚度的预测精度。相较传统模型,机器学习模型预测效果更优。其中SVR的拟合和检验效果最好,适合该区域树皮厚度的精准预测。 展开更多
关键词 樟子松 树皮厚度 预测精度 人工神经网络 支持向量回归
在线阅读 下载PDF
基于WOA-IC优化神经网络的隧道爆破振动预测研究 被引量:1
8
作者 高宇璠 傅洪贤 《振动与冲击》 北大核心 2025年第4期229-237,共9页
为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量... 为了提高爆破振动预测精度,提出了一种鲸鱼优化算法(whale optimization algorithm,WOA)和信息准则(information criterion,IC)优化的人工神经网络(artificial neural network,ANN)爆破振动预测模型。根据二维指标变量法将地质参数定量化,建立了包括3个定量参数和10个定性参数的更完整的数据集。利用信息准则对模型复杂度的反馈,构建了一个提高模型泛化能力的双层优化结构,分析改进ANN模型的激活函数和训练算法最优组合,并引入鲸鱼算法优化模型初始权值和阈值的选取,降低模型输出结果的偏差和波动。对比分析WOA-IC-ANN模型与传统经验公式、ANN模型、IC-ANN模型、WOA-ANN模型预测结果的差异。研究表明,WOA-IC-ANN模型的预测结果与实际吻合更好,误差显著降低,具有较好的泛化能力。研究成果可用于隧道爆破工程的振动预测,并为类似工作提供借鉴和参考。 展开更多
关键词 爆破振动 预测模型 信息准则(IC) 鲸鱼优化算法(WOA) 人工神经网络(ANN)
在线阅读 下载PDF
基于数字孪生的变压器热点温度预测预警技术研究 被引量:1
9
作者 李佰霖 马云帆 +3 位作者 陈昱锐 罗远林 褚凡武 付文龙 《工程设计学报》 北大核心 2025年第3期281-295,共15页
变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字... 变压器热点温度对电网系统的可靠性和稳定性有直接影响。针对传统变压器管理模式复杂以及变压器热点温度预测方法存在成本高、计算效率低和计算误差高等问题,提出了一种基于数字孪生的变压器热点温度预测预警技术。首先,搭建变压器数字孪生六维模型,实现了系统数据共通、多源融合和虚实交互等功能。然后,构建可承载人工智能与机器学习算法的感知交互驱动型数字孪生系统,并采用混沌自适应粒子群优化(chaotic adaptive particle swarm optimization,CAPSO)算法对BP(back propagation,反向传播)神经网络的权重和阈值进行优化,加快了原始网络的收敛速度,同时建立了基于CAPSO-BP的变压器热点温度预测模型。最后,利用变压器现场监测数据在虚拟引擎平台上进行仿真分析,实现了变压器热点温度预测预警系统各功能的开发应用并验证了预测模型的可行性和有效性。研究结果为数字孪生变压器系统由数字化向智能化转型提供了新的思路和理论依据。 展开更多
关键词 变压器 数字孪生 人工智能 机器学习 混沌自适应粒子群优化 反向传播神经网络 温度预测
在线阅读 下载PDF
混合变分模态长短期记忆网络水库表面位移形变预测
10
作者 孙喜文 贺小星 +3 位作者 鲁铁定 王海城 张云涛 陈红康 《国防科技大学学报》 北大核心 2025年第3期151-161,共11页
为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decom... 为提高水库位移形变预测精度,通过改变变分模态分解(variational mode decomposition,VMD)的分解方式,融合VMD与长短期记忆网络对非线性非平稳的水库位移形变进行预测,提出了一种混合变分模态长短期记忆网络(mix variational mode decomposition long short-term memory,MVMDLSTM)模型预测方法;对不同单一预测模型与组合模型采用多源数据集验证新方法的可靠性。实验结果表明:MVMDLSTM模型能有效减弱单一预测模型与经验模态分解组合模型估计的偏差,MVMDLSTM模型预测精度更优,为稳定监测水库慢滑移和蠕动等微小变形预测预警提供有效的数据决策。 展开更多
关键词 变分模态分解 人工神经网络 长短期记忆网络 形变预测
在线阅读 下载PDF
基于混合Wiener-ANN模型的轴承剩余使用寿命预测方法
11
作者 叶新 苏少权 +2 位作者 尚伟 杨帆 文龙 《机械强度》 北大核心 2025年第9期233-240,共8页
轴承作为精密仪器中的关键旋转部件,其运行状态直接影响系统的安全性和稳定性,因此准确预测轴承剩余使用寿命尤为重要。现有的轴承剩余寿命预测方法可分为物理模型类和数据驱动类。物理模型方法具有较高的可解释性,所需样本量少,但预测... 轴承作为精密仪器中的关键旋转部件,其运行状态直接影响系统的安全性和稳定性,因此准确预测轴承剩余使用寿命尤为重要。现有的轴承剩余寿命预测方法可分为物理模型类和数据驱动类。物理模型方法具有较高的可解释性,所需样本量少,但预测精度较低,且不能在线预测;数据驱动方法则具有较高的预测精度和在线预测能力,但需要大量历史样本数据。为此,提出了结合物理模型和数据驱动方法的混合Wiener过程-人工神经网络(Wiener-Artificial Neural Network,Wiener-ANN)模型用于轴承剩余使用寿命预测。该模型通过时频域特征作为多源输入数据优化Wiener过程模型,使用优化后的模型进行第1阶段预测。随后,构建一个以第1阶段预测结果作为训练数据优化的三层ANN,将优化后的Wiener模型与ANN联合用于测试数据集的剩余寿命预测。与传统Wiener模型和ANN方法的预测结果对比表明,该方法在预测精度和应用性能上具有显著优势,具有较好的工程应用价值。 展开更多
关键词 轴承 剩余使用寿命 预测方法 Wiener过程模型 人工神经网络
在线阅读 下载PDF
基于在线视觉与人工神经网络的熔道高度预测方法
12
作者 苗立国 邢飞 +2 位作者 柴媛欣 刘琦 孙凤 《焊接学报》 北大核心 2025年第3期65-74,共10页
激光定向能量沉积熔道高度的预测是沉积过程智能控制的关键,由于工艺参数与沉积尺寸的强非线性关系,基于工艺参数的熔道高度特别是沉积起、止等不稳定区域的实时预测问题亟待解决,为此,提出了一种新的熔道高度预测的框架,该框架将同轴... 激光定向能量沉积熔道高度的预测是沉积过程智能控制的关键,由于工艺参数与沉积尺寸的强非线性关系,基于工艺参数的熔道高度特别是沉积起、止等不稳定区域的实时预测问题亟待解决,为此,提出了一种新的熔道高度预测的框架,该框架将同轴视觉技术的高实时性与人工神经网络的非线性建模优势相结合.首先,设计正交试验收集单道直线沉积数据,并利用数据构建基础模型;随后,为了有效地获取过程特征数据,设计了同轴熔池在线监测系统,通过在线监测系统得到实时熔道宽度数据;最后,将测得的熔道宽度作为特征之一输入至人工神经网络中.结果表明,该方法具有良好的在实时预测精度,平均相对误差小于7%,响应时间小于20ms,为定向能量沉积熔道高度的在线预测提供了一个可行方案.创新点:(1)将同轴视觉技术与人工神经网络结合,实现熔道高度的高精度在线预测.(2)采用皮尔森法对工艺参数和特征参数进行分析,增强了模型输入与输出的相关性.(3)方法可扩展到增材制造领域其它特征的预测,对业界人士提供了一定参考. 展开更多
关键词 激光定向能量沉积 人工神经网络 熔道高度预测 机器视觉
在线阅读 下载PDF
基于图神经网络的多光伏场站出力短期时-空预测
13
作者 刘洪波 王铎皓 +3 位作者 石鹏 李倩倩 王曦 孙黎 《电网与清洁能源》 北大核心 2025年第1期89-96,共8页
随着可再生能源的快速发展,光伏场站作为重要的电力供应来源之一,其出力短期时-空预测成为电力系统调度和运营的关键问题。提出了一种基于图神经网络的多光伏场站出力短期时-空预测方法,旨在解决以往研究对多光伏场站间光伏出力的时-空... 随着可再生能源的快速发展,光伏场站作为重要的电力供应来源之一,其出力短期时-空预测成为电力系统调度和运营的关键问题。提出了一种基于图神经网络的多光伏场站出力短期时-空预测方法,旨在解决以往研究对多光伏场站间光伏出力的时-空关联难以进行精准建模进而导致预测效果不精确的问题。首先,通过相关性分析方法确定影响光伏出力的核心特征,并构建特征集合。然后,充分考虑光伏场站光伏出力的时域和空域特征对预测效果的影响,将多个光伏场站数据以时-空图的形式进行表达,并通过边特征描述站点之间的关联程度。其次,利用图卷积层对时-空图数据进行学习,有效地捕捉时空图内节点之间的空间特征。最后,将图卷积层输出的空间特征构成时间序列输入至门控循环单元中,完成对时域特征的挖掘。与传统的预测方法相比,新方法有显著的优势。该方法能够充分考虑光伏场站之间的时空关联,提高了预测的准确性和可靠性。 展开更多
关键词 多光伏场站出力时-空预测 图卷积神经网络 图数据
在线阅读 下载PDF
基于改进PSO-BP神经网络的土遗址锚固力智能化预测研究
14
作者 殷运童 马剑 +4 位作者 白镇滔 芦苇 毛筱霏 倪娜 李东波 《力学学报》 北大核心 2025年第4期867-882,共16页
古建筑“最小干预”原则严禁加固设计时大规模原位测试,导致锚固设计等往往具有较大经验性和随机性.近年来,人工智能的数据挖掘、高效精准等优势为古建筑保护提供了新的思路,如何协同好“最小干预”和加固设计科学化已成为古建筑保护智... 古建筑“最小干预”原则严禁加固设计时大规模原位测试,导致锚固设计等往往具有较大经验性和随机性.近年来,人工智能的数据挖掘、高效精准等优势为古建筑保护提供了新的思路,如何协同好“最小干预”和加固设计科学化已成为古建筑保护智能化的重要课题.为此,引入自适应惯性权重和非对称学习因子改进传统粒子群算法,进而优化BP(backpropagation)神经网络的初始权重和阈值,构建一种新型粒子群优化BP神经网络(improved particle swarm optimization-backpropagation,IPSO-BP)锚固力智能化预测模型.以碳纤维楠竹锚杆为例,综合原位和模型试验,考虑锚固长度、直径、倾斜角度、灌浆体强度、孔径和碳纤维缠绕间距等影响因素,建立锚固力样本数据.数据学习和预测结果表明,IPSO-BP模型具有更好的鲁棒性、效率和精度,与传统粒子群优化BP神经网络模型相比均方根误差与平均绝对误差分别下降了61.3%和31.9%.基于Spearman相关系数理论,进一步分析了锚固力对不同影响因素的灵敏性,结果表明,锚固长度是影响锚固力的关键因素,而钻孔体积将直接影响锚固施工时对土遗址的损伤程度.进而以锚固长度和孔径作为设计变量,通过单目标和多目标优化分析,获得了锚固力最大化和钻孔体积最小化的最优设计方案.研究成果可为土遗址加固保护的智能化发展提供技术支撑和理论参考. 展开更多
关键词 土遗址 锚固力 粒子群优化 BP 神经网络 预测模型
在线阅读 下载PDF
基于GBDT和AEO-CNN-Informer的大坝位移深度学习预测模型
15
作者 张波 程雪辰 +2 位作者 罗炜 陈健 王友乐 《水电能源科学》 北大核心 2025年第8期142-146,共5页
为进一步提高大坝位移预测模型的精度,提出了一种结合梯度提升决策树(GBDT)、卷积神经网络(CNN)、Informer和人工生态系统优化算法(AEO)的混合模型。首先,利用GBDT评估输入特征的重要性,筛选出显著影响大坝位移的重要因子。然后,利用CN... 为进一步提高大坝位移预测模型的精度,提出了一种结合梯度提升决策树(GBDT)、卷积神经网络(CNN)、Informer和人工生态系统优化算法(AEO)的混合模型。首先,利用GBDT评估输入特征的重要性,筛选出显著影响大坝位移的重要因子。然后,利用CNN对输入数据进行深度特征提取,挖掘有效信息;采用Informer模型建立提取特征与坝体位移之间的映射关系。最后,采用AEO算法对模型的超参数进行寻优。实际工程数据验证结果表明,与其他对比模型相比,所提模型具有更好的预测精度和稳定性。 展开更多
关键词 大坝位移预测 梯度提升决策树 卷积神经网络 INFORMER 人工生态系统优化
在线阅读 下载PDF
基于可解释机器学习的连续梁桥地震响应预测方法研究
16
作者 李悦 晏勇 +2 位作者 张常勇 李冲 李淑明 《世界桥梁》 北大核心 2025年第4期69-77,共9页
为提高桥梁地震响应预测效率,提出一种基于可解释机器学习的连续梁桥地震预测方法。该方法以公路网典型四跨连续梁桥结构特性和地震动参数为基础,首先构建桥梁设计特征参数和地震响应的数据集;然后运用决策树、支持向量机、随机森林及... 为提高桥梁地震响应预测效率,提出一种基于可解释机器学习的连续梁桥地震预测方法。该方法以公路网典型四跨连续梁桥结构特性和地震动参数为基础,首先构建桥梁设计特征参数和地震响应的数据集;然后运用决策树、支持向量机、随机森林及人工神经网络等机器学习模型对数据集进行训练和测试,采用决定系数R2、均方根误差RMSE、平均绝对误差MAE和均方误差MSE等指标评估模型的预测精度;最后基于可解释技术对最优模型中影响桥梁抗震性能的主要设计参数进行分析,并将最优模型与传统精确模拟进行对比。结果表明:人工神经网络模型对连续梁桥地震响应预测的适用性最高,其R2达到0.98,且RMSE、MAE和MSE均较小;地震动峰值加速度和桥墩直径是影响预测结果的主导因素,地震动峰值加速度、墩高、跨径与预测结果呈正相关,桥墩直径与其呈负相关;人工神经网络模型预测结果与传统精确模拟的误差在2.5%以下,且计算效率提高了500多倍。 展开更多
关键词 公路桥 连续梁桥 地震响应 设计特征参数 机器学习 可解释技术 人工神经网络模型 预测精度
在线阅读 下载PDF
一种高效的连续时序图注意力网络的交通预测模型
17
作者 刘云翔 梁智超 《计算机工程》 北大核心 2025年第4期350-359,共10页
交通预测领域面临传统时空建模方法难以有效捕获长程依赖关系、固定时间窗口机制无法适应动态时序模式以及基于统计学的传统模型在复杂拓扑关系建模方面存在局限性3个主要挑战。针对上述问题,提出基于连续时序的高效图注意力网络(T-EGAT... 交通预测领域面临传统时空建模方法难以有效捕获长程依赖关系、固定时间窗口机制无法适应动态时序模式以及基于统计学的传统模型在复杂拓扑关系建模方面存在局限性3个主要挑战。针对上述问题,提出基于连续时序的高效图注意力网络(T-EGAT)。首先设计高效多头自注意力机制(EMSA),采用参数共享和稀疏计算策略,将注意力头的计算复杂度从O(N)降低到O(Nlog_(a)N);其次开发线性时序扩展模块,通过可学习的时序卷积核将时间感知范围从固定K步扩展到K+Δ步的弹性窗口,其中Δ∈[0,12]为自适应调整参数;最后构建动态图推理架构,利用图神经网络(GNNs)的邻域聚合特性,在每个时间步自动生成包含83个交通要素的拓扑关系矩阵。实验结果表明,在PeMSD4、METR-LA等5个基准数据集上,T-EGAT相较16种基线模型(包括DCRNN、GraphWaveNet、ASTGCN等)取得显著提升,平均绝对误差(MAE)降低了2.77%~5.97%,均方根误差(RMSE)改善了3.12%~6.44%,单步预测时间缩短了1.41%~2.3%。消融实验结果表明,EMSA带来42%的精度提升,时序扩展模块减少了17%的长时预测误差,动态图生成机制提高了29%的拓扑建模准确率。该模型在突发交通事故场景下表现出更强的鲁棒性,异常事件检测F1值达到0.873,较传统方法提升了21.5%。该方案为实时交通管理系统提供了新的技术框架,其弹性时序建模机制和高效注意力架构为时空预测任务提供了普适性解决方案。 展开更多
关键词 智能交通 交通预测模型 图神经网络 交通流 多头自注意力机制 人工智能决策
在线阅读 下载PDF
Intelligent predictive model of ventilating capacity of imperial smelt furnace 被引量:1
18
作者 唐朝晖 胡燕瑜 +1 位作者 桂卫华 吴敏 《Journal of Central South University of Technology》 2003年第4期364-368,共5页
In order to know the ventilating capacity of imperial smelt furnace(ISF), and increase the output of plumbum, an intelligent modeling method based on gray theory and artificial neural networks(ANN) is proposed, in whi... In order to know the ventilating capacity of imperial smelt furnace(ISF), and increase the output of plumbum, an intelligent modeling method based on gray theory and artificial neural networks(ANN) is proposed, in which the weight values in the integrated model can be adjusted automatically. An intelligent predictive model of the ventilating capacity of the ISF is established and analyzed by the method. The simulation results and industrial applications demonstrate that the predictive model is close to the real plant, the relative predictive error is 0.72%, which is 50% less than the single model, leading to a notable increase of the output of plumbum. 展开更多
关键词 imperial SMELT FURNACE ventilating capacity INTELLIGENT predictIVE model artificial neural network GRAY theory adaptive fuzzy combination
在线阅读 下载PDF
基于知识驱动图版约束的致密砂岩气储层测井参数智能预测 被引量:3
19
作者 王跃祥 赵佐安 +6 位作者 唐玉林 谢冰 李权 赖强 夏小勇 米兰 李旭 《天然气工业》 EI CAS CSCD 北大核心 2024年第9期68-76,共9页
中国致密砂岩气资源潜力巨大,是天然气增储上产的重要对象,但致密砂岩储层空间类型多样,纵横向变化大,“四性”关系复杂,测井系列多样,测井项目少,常规测井技术评价致密储层参数难度大、效率低。为此,以四川盆地金秋、天府气田致密气为... 中国致密砂岩气资源潜力巨大,是天然气增储上产的重要对象,但致密砂岩储层空间类型多样,纵横向变化大,“四性”关系复杂,测井系列多样,测井项目少,常规测井技术评价致密储层参数难度大、效率低。为此,以四川盆地金秋、天府气田致密气为对象,构建构造区块—油气田—油气藏—测井解释图版主线,形成了致密砂岩气储层测井参数解释知识图谱,并通过神经网络算法对样本数据进行处理并约束模型结果,建立了图版约束的人工智能储层测井参数预测模型,实现了专家经验与数据双向驱动的储层测井参数智能预测。研究结果表明:(1)新智能模型融入了专家经验图版信息,且构建了专家经验与数据双向驱动的智能参数预测方法,极大地提升了模型对测井领域知识的理解能力和实践能力;(2)基于常规测井曲线,通过特征处理实现多维特征的挖掘,衍生出新曲线,与常规曲线一起作为输入进行模型强化训练,有助于提高解释模型的准确率;(3)实际应用结果表明,采用知识驱动图版约束的致密砂岩气储层参数智能预测方法计算的孔隙度和渗透率与岩心分析孔隙度及渗透率之间的误差分别为7.9%和15%,计算的含水饱和度与密闭取心饱和度之间的误差仅为5%。结论认为,基于知识驱动图版约束的致密砂岩气储层参数智能预测技术可以解决老井人工评价工作量大,测井解释标准不统一的问题,并可实现快速高效测井智能评价及潜力优选,将有力地推动了人工智能在测井领域的深度应用。 展开更多
关键词 四川盆地 致密砂岩气 储层测井参数 知识驱动 神经网络算法 智能预测 人工智能
在线阅读 下载PDF
基于在线监测时间序列数据的水质预测模型研究进展 被引量:1
20
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部