Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under th...To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.展开更多
The particle simulation method is used to solve free-surface slurry flow problems that may be encountered in several scientific and engineering fields.The main idea behind the use of the particle simulation method is ...The particle simulation method is used to solve free-surface slurry flow problems that may be encountered in several scientific and engineering fields.The main idea behind the use of the particle simulation method is to treat granular or other materials as an assembly of many particles.Compared with the continuum-mechanics-based numerical methods such as the finite element and finite volume methods,the movement of each particle is accurately described in the particle simulation method so that the free surface of a slurry flow problem can be automatically obtained.The major advantage of using the particle simulation method is that only a simple numerical algorithm is needed to solve the governing equation of a particle simulation system.For the purpose of illustrating how to use the particle simulation method to solve free-surface flow problems,three examples involving slurry flow on three different types of river beds have been considered.The related particle simulation results obtained from these three examples have demonstrated that:1) The particle simulation method is a promising and useful method for solving free-surface flow problems encountered in both the scientific and engineering fields;2) The shape and irregular roughness of a river bed can have a significant effect on the free surface morphologies of slurry flow when it passes through the river bed.展开更多
In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditio...In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.展开更多
Free vibration analysis of non-homogeneous orthotropic plates resting on a Pasternak type of elastic foundation is investigated. A set of admissible orthogonal polynomials are generated with Gram-Schmidt orthogonaliza...Free vibration analysis of non-homogeneous orthotropic plates resting on a Pasternak type of elastic foundation is investigated. A set of admissible orthogonal polynomials are generated with Gram-Schmidt orthogonalization procedure and adopted in the Rayleigh-Ritz method. Accuracy and applicability of the method are examined by comparison of the results for different boundary conditions and material types with those available in literature. It is found that this method has good accuracy regardless of type of boundary condition and yields very accurate results even with low number of terms of orthogonal polynomials for the first mode of vibration. For higher modes of vibration, higher terms of orthogonal polynomials should be used. The effects of foundation parameter, density and non-homogeneity parameters on natural frequency are examined. It is concluded that natural frequency of plates are more sensitive to shearing layer coefficient rather than Winkler coefficient and density parameter has weakening effect on natural frequency.展开更多
The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES...The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.展开更多
In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memo...In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.展开更多
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.Th...The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.展开更多
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
基金Project(2013CB035401)supported by the National Basic Research Program of ChinaProject(2012AA041803)supported by the National High-Technology Research and Development Program of China+2 种基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2015GK1029)supported by the Science and Technology Project of Strategic Emerging Industry in Hunan Province,ChinaProject(CX2017B048)supported by the Hunan Provincial Innovation Foundation For Postgraduate,China
文摘To study the rock breaking method under the free surface induced by disc cutter,the rock breaking simulations were first conducted based on the discrete element method,and the dynamic process of rock breaking under the free surface was studied including stressed zone,crush zone,crack initiation and propagation.Then the crack propagation conditions,specific energy,etc.under different free surface distance(S)were also investigated combined with linear cutting experiments.The results show that the rock breaking process under the free surface induced by disc cutter is dominated by tension failure mode.There exists a critical S to promote crack propagation to free surface effectively.And this rock breaking method can improve the rock breaking force and breaking efficiency significantly when proper.
基金Project(11272359)supported by the National Natural Science Foundation of China
文摘The particle simulation method is used to solve free-surface slurry flow problems that may be encountered in several scientific and engineering fields.The main idea behind the use of the particle simulation method is to treat granular or other materials as an assembly of many particles.Compared with the continuum-mechanics-based numerical methods such as the finite element and finite volume methods,the movement of each particle is accurately described in the particle simulation method so that the free surface of a slurry flow problem can be automatically obtained.The major advantage of using the particle simulation method is that only a simple numerical algorithm is needed to solve the governing equation of a particle simulation system.For the purpose of illustrating how to use the particle simulation method to solve free-surface flow problems,three examples involving slurry flow on three different types of river beds have been considered.The related particle simulation results obtained from these three examples have demonstrated that:1) The particle simulation method is a promising and useful method for solving free-surface flow problems encountered in both the scientific and engineering fields;2) The shape and irregular roughness of a river bed can have a significant effect on the free surface morphologies of slurry flow when it passes through the river bed.
基金Project(50378036) supported by the National Natural Science Foundation of China
文摘In order to discuss the buckling stability of super-long rock-socketed filling piles widely used in bridge engineering in soft soil area such as Dongting Lake, the second stability type was adopted instead of traditional first type, and a newly invented numerical analysis method, i.e. the element-free Galerkin method (EFGM), was introduced to consider the non-concordant deformation and nonlinearity of the pile-soil interface. Then, based on the nonlinear elastic-ideal plastic pile-soil interface model, a nonlinear iterative algorithm was given to analyze the pile-soil interaction, and a program for buckling analysis of piles by the EFGM (PBAP-EFGM) and arc length method was worked out as well. The application results in an engineering example show that, the shape of pile top load-settlement curve obtained by the program agrees well with the measured one, of which the difference may be caused mainly by those uncertain factors such as possible initial defects of pile shaft and the eccentric loading during the test process. However, the calculated critical load is very close with the measured ultimate load of the test pile, and the corresponding relative error is only 5.6%, far better than the calculated values by linear and nonlinear incremental buckling analysis (with a greater relative error of 37.0% and 15.4% respectively), which also verifies the rationality and feasibility of the present method.
文摘Free vibration analysis of non-homogeneous orthotropic plates resting on a Pasternak type of elastic foundation is investigated. A set of admissible orthogonal polynomials are generated with Gram-Schmidt orthogonalization procedure and adopted in the Rayleigh-Ritz method. Accuracy and applicability of the method are examined by comparison of the results for different boundary conditions and material types with those available in literature. It is found that this method has good accuracy regardless of type of boundary condition and yields very accurate results even with low number of terms of orthogonal polynomials for the first mode of vibration. For higher modes of vibration, higher terms of orthogonal polynomials should be used. The effects of foundation parameter, density and non-homogeneity parameters on natural frequency are examined. It is concluded that natural frequency of plates are more sensitive to shearing layer coefficient rather than Winkler coefficient and density parameter has weakening effect on natural frequency.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number 107.02-2019.330。
文摘The main purpose of this paper is to present numerical results of static bending and free vibration of functionally graded porous(FGP) variable-thickness plates by using an edge-based smoothed finite element method(ES-FEM) associate with the mixed interpolation of tensorial components technique for the three-node triangular element(MITC3), so-called ES-MITC3. This ES-MITC3 element is performed to eliminate the shear locking problem and to enhance the accuracy of the existing MITC3 element. In the ES-MITC3 element, the stiffness matrices are obtained by using the strain smoothing technique over the smoothing domains formed by two adjacent MITC3 triangular elements sharing an edge. Materials of the plate are FGP with a power-law index(k) and maximum porosity distributions(U) in the forms of cosine functions. The influences of some geometric parameters, material properties on static bending, and natural frequency of the FGP variable-thickness plates are examined in detail.
文摘In this paper, we apply the recursive genetic programming (RGP) approach to the cognition of a system, and then proceed to the detecting procedure for structural changes in the system whose components are of long memory. This approach is adaptive and model-free, which can simulate the individual activities of the system's participants, therefore, it has strong ability to recognize the operating mechanism of the system. Based on the previous cognition about the system, a testing statistic is developed for the detection of structural changes in the system. Furthermore, an example is presented to illustrate the validity and practical value of the proposed.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
基金Key project(02103) supported by National Education Department of ChinaKey project(02A008) supported by the Education Department of Hunan Province,China+3 种基金Project(2005090) supported by Central South University of Forestry and TechnologyProject(03JJY3007) supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Rewarding Project for Excellent PhD Thesis of Hunan Province,ChinaProject(07031B) supported by Scientific Research Fund of Central South University of Forestry and Technology
文摘The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.