Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the...Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.展开更多
Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are st...Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.展开更多
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C...Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.展开更多
Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influenc...Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The...This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.展开更多
The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an exp...The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an expansive soils area. Expansive soils is a special kind of tenacious clay, which swells when meeting with water and shrinks when losing water. With complicated mechanical properties, it changes with the variation of water content. As a result, expansive soils become the key object of study on unsaturated soils mechanics for the project. From the status of study on unsaturated soils at home and abroad, this paper covers an analysis on stability analysis method of expansive soils slope, determination of expansive soils strength, rational design of canal slope ratio and support, and forecast of landslide for the Middle Route Project of South-to-North Water Transfer.展开更多
To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are re...To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.展开更多
A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a bl...A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a black soil was conducted from 2004 to 2005 in Heilongjiang Province. The results showed that the nitrogen application rates at 45 kg·hm^-2 with the ratio of 75% NO3-N to 25% NH4-N resulted in the highest potassium and reducing sugar contents in the flue-cured tobacco leaving with the highest quality grade and value. It is recommended that this ni- trogen application rate and NO3-N to NH4-N ratio should be widely applied on flue-cured tobacco grown in the black soil in Heilongjiang Province.展开更多
With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorat...With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.展开更多
[Background]Soil erosion,the process by which soil is eroded,transported,and deposited by external forces like wind and water,is a widespread global phenomenon with significant env ironmental and economic impacts.Over...[Background]Soil erosion,the process by which soil is eroded,transported,and deposited by external forces like wind and water,is a widespread global phenomenon with significant env ironmental and economic impacts.Over the past two decades,China's soil erosion research has made significant strides,reaching a world-class level in both quality and quantity.However,there has been a lack of comprehensive studies summarizing the overall situation and development trends in this field.This study aims to fill that gap by providing an overview of the current status and trends in China's soil erosion research.[Methods]This study employed bibliometric methods to analyze 6588 journal articles on soil erosion in China,collected from the Scopus database.The analysis focused on several key aspects,including the number of publications,subject areas,leading research institutes,funding organizations,key research themes,and patterns of international collaboration.Additionally,network maps were generated using VOSviewer to visualize the intellectual structure and connections within the research field,offering insights into how different research topics and institutes are interconnected.[Results]The findings reveal a significant increase in the number of publications since the 1980s,rising from just 4 articles in 1981 to 699 articles in 2023.While soil erosion research is multidisciplinary in nature,the most popular subject areas were“Environmental Science”“Agriculture and Biological Sciences”and“Earth and Planetary Sciences”.The Chinese Academy of Sciences is the most productive institute,with several universities and government research institutes also making substantial contributions.The primary funding source was government organizations,with the National Natural Science Foundation of China being the largest funder.Journals focusing on water and soil,ecology,and environmental sciences were the primary platforms for publishing soil erosion research in China.Catena,Science of the Total Environment,Transactions of CSAM,and Acta Ecologica Sinica were the most productive journals.Six international collaboration networks were identified in this field.There are collaboration networks in this field.The large cluster is centered on China,connecting some European Union countries.This is followed by a small cluster of commonwealth countries headed by the United Kingdom.The rest are bilateral collaborations between two countries that do not form networks.The major research themes identified were“soil erosion and land degradation”“erosion dynamics and drivers”“soil erosion process and mechanism”and“erosion monitoring technology”.Earlier research was heavily focused on topics such as“GIS”“remote sensing”“Cs-137”“landscape pattern”“vegetation restoration”“simulated rainfall”“loess plateau”and“black soil.”In contrast,recent studies have shifted towards“climate change”“ecosystem services”“soil erodibility”“gully erosion”and“RUSLE”.[Conclusions]This study offers a comprehensive overview of China's soil erosion research,serving as a valuable resource for researchers and policy-makers interested in understanding the knowledge structure and development trends in this field.Additionally,the study highlights emerging research topics and potential areas for future exploration,thereby guiding the direction of subsequent studies in soil erosion.展开更多
基金National Natural Science Foundation of China(No.41967035)。
文摘Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195).
文摘Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U2340219)。
文摘Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.
基金Project(2020YFC1908802)supported by the National Key Research and Development Project of China。
文摘Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
文摘This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.
文摘The main canal of the Middle Route Project of South-to-North Water Transfer totals more than 1 240 km in length. In Henan Province and Hebei Province, there will be a section of more than 120 km passing through an expansive soils area. Expansive soils is a special kind of tenacious clay, which swells when meeting with water and shrinks when losing water. With complicated mechanical properties, it changes with the variation of water content. As a result, expansive soils become the key object of study on unsaturated soils mechanics for the project. From the status of study on unsaturated soils at home and abroad, this paper covers an analysis on stability analysis method of expansive soils slope, determination of expansive soils strength, rational design of canal slope ratio and support, and forecast of landslide for the Middle Route Project of South-to-North Water Transfer.
基金Project(51578511)supported by the National Natural Science Foundation of China。
文摘To further investigate the one-dimensional(1D)rheological consolidation mechanism of double-layered soil,the fractional derivative Merchant model(FDMM)and the non-Darcian flow model with the non-Newtonian index are respectively introduced to describe the deformation of viscoelastic soil and the flow of pore water in the process of consolidation.Accordingly,an 1D rheological consolidation equation of double-layered soil is obtained,and its numerical analysis is performed by the implicit finite difference method.In order to verify its validity,the numerical solutions by the present method for some simplified cases are compared with the results in the related literature.Then,the influence of the revelent parameters on the rheological consolidation of double-layered soil are investigated.Numerical results indicate that the parameters of non-Darcian flow and FDMM of the first soil layer greatly influence the consolidation rate of double-layered soil.As the decrease of relative compressibility or the increase of relative permeability between the lower soil and the upper soil,the dissipation rate of excess pore water pressure and the settlement rate of the ground will be accelerated.Increasing the relative thickness of soil layer with high permeability or low compressibility will also accelerate the consolidation rate of double-layered soil.
文摘A field experiment about effects of nitrogen application rates and different NO3-N to NH4-N ratios on agronomic, chemical and biological characteristics as well as yield and quality of flue-cured tobacco grown in a black soil was conducted from 2004 to 2005 in Heilongjiang Province. The results showed that the nitrogen application rates at 45 kg·hm^-2 with the ratio of 75% NO3-N to 25% NH4-N resulted in the highest potassium and reducing sugar contents in the flue-cured tobacco leaving with the highest quality grade and value. It is recommended that this ni- trogen application rate and NO3-N to NH4-N ratio should be widely applied on flue-cured tobacco grown in the black soil in Heilongjiang Province.
基金Supported by China Agriculture Research System(Sugar Crops)of Ministry of Agriculture and Rural Affairs and Ministry of Finance(CARS-170601)Natural Science Foundation of Heilongjiang Province(C201239).
文摘With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.
基金National Science and Technology Council(112-2625-M-034-002-,113-2625-M-034-002-)。
文摘[Background]Soil erosion,the process by which soil is eroded,transported,and deposited by external forces like wind and water,is a widespread global phenomenon with significant env ironmental and economic impacts.Over the past two decades,China's soil erosion research has made significant strides,reaching a world-class level in both quality and quantity.However,there has been a lack of comprehensive studies summarizing the overall situation and development trends in this field.This study aims to fill that gap by providing an overview of the current status and trends in China's soil erosion research.[Methods]This study employed bibliometric methods to analyze 6588 journal articles on soil erosion in China,collected from the Scopus database.The analysis focused on several key aspects,including the number of publications,subject areas,leading research institutes,funding organizations,key research themes,and patterns of international collaboration.Additionally,network maps were generated using VOSviewer to visualize the intellectual structure and connections within the research field,offering insights into how different research topics and institutes are interconnected.[Results]The findings reveal a significant increase in the number of publications since the 1980s,rising from just 4 articles in 1981 to 699 articles in 2023.While soil erosion research is multidisciplinary in nature,the most popular subject areas were“Environmental Science”“Agriculture and Biological Sciences”and“Earth and Planetary Sciences”.The Chinese Academy of Sciences is the most productive institute,with several universities and government research institutes also making substantial contributions.The primary funding source was government organizations,with the National Natural Science Foundation of China being the largest funder.Journals focusing on water and soil,ecology,and environmental sciences were the primary platforms for publishing soil erosion research in China.Catena,Science of the Total Environment,Transactions of CSAM,and Acta Ecologica Sinica were the most productive journals.Six international collaboration networks were identified in this field.There are collaboration networks in this field.The large cluster is centered on China,connecting some European Union countries.This is followed by a small cluster of commonwealth countries headed by the United Kingdom.The rest are bilateral collaborations between two countries that do not form networks.The major research themes identified were“soil erosion and land degradation”“erosion dynamics and drivers”“soil erosion process and mechanism”and“erosion monitoring technology”.Earlier research was heavily focused on topics such as“GIS”“remote sensing”“Cs-137”“landscape pattern”“vegetation restoration”“simulated rainfall”“loess plateau”and“black soil.”In contrast,recent studies have shifted towards“climate change”“ecosystem services”“soil erodibility”“gully erosion”and“RUSLE”.[Conclusions]This study offers a comprehensive overview of China's soil erosion research,serving as a valuable resource for researchers and policy-makers interested in understanding the knowledge structure and development trends in this field.Additionally,the study highlights emerging research topics and potential areas for future exploration,thereby guiding the direction of subsequent studies in soil erosion.