期刊文献+
共找到561篇文章
< 1 2 29 >
每页显示 20 50 100
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
1
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long short-term Memory Temporal Pattern Attention power load forecasting
在线阅读 下载PDF
基于波动信息优选及切换输入机制的短期延长期风电集群功率预测 被引量:1
2
作者 杨茂 鞠超毅 +1 位作者 张薇 苏欣 《太阳能学报》 北大核心 2025年第3期546-558,共13页
在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为... 在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为波动性优先历史选择和稳定性优先历史选择,在波动性优先历史选择效果较差时,利用稳定性优先历史选择进行误差平衡。所提框架在甘肃省某风电集群进行验证,结果表明,所提框架均方根误差在8~15d所有时间尺度下平均降低0.84%~1.45%,在未来数值天气预报(NWP)可用性匮乏的情况下实现了8~15d预测,有效提高短期延长期预测的可靠性。 展开更多
关键词 风电功率 预测 切换机制 优选 短期 短期延长期
在线阅读 下载PDF
基于图神经网络的短期风电功率群体预测方法
3
作者 杨茂 郭镇鹏 +4 位作者 王达 张薇 王勃 江任贤 苏欣 《电力系统保护与控制》 北大核心 2025年第19期79-88,共10页
为降低风电波动性对电力系统的影响,提出了计及时空关联性的大规模风电场群短期功率预测方法,同步输出所有风电场的短期功率预测结果。首先,提出了综合考虑风速、风向的空间相关性评价指标,进一步建立表征风电场群时空相关性的图拓扑结... 为降低风电波动性对电力系统的影响,提出了计及时空关联性的大规模风电场群短期功率预测方法,同步输出所有风电场的短期功率预测结果。首先,提出了综合考虑风速、风向的空间相关性评价指标,进一步建立表征风电场群时空相关性的图拓扑结构。然后,构建一种深度残差图注意力网络挖掘多风电场间的时空相关特征,在训练过程中保存数据中蕴含的时空价值信息。最后,提出了虚假预测评价指标,评估场站预测功率在汇聚成集群预测功率时的虚假预测成分,使场群预测结果评价更加公平。以中国吉林省的某20个风电场组成的风电场群为研究对象开展实验,实验结果表明提出的风电功率预测模型的日前功率预测准确率达到91.68%。 展开更多
关键词 图注意力网络 深度残差网络 时空相关性 短期风电功率预测 误差评估
在线阅读 下载PDF
基于VMD-Itransformer-MOSSA模型的短期风电功率预测方法
4
作者 张伟 高鹭 +1 位作者 秦岭 李伟 《计算机工程与设计》 北大核心 2025年第9期2690-2698,共9页
为解决天气预报存在较小的误差,使风电功率预测产生巨大误差的问题,提出一种结合VMD算法和MOSSA优化的Transformer模型用于短期风力预测。应用变分模态分解处理天气预报风速和实测风速间的误差,将分解结果结合天气预报信息中的其它部分... 为解决天气预报存在较小的误差,使风电功率预测产生巨大误差的问题,提出一种结合VMD算法和MOSSA优化的Transformer模型用于短期风力预测。应用变分模态分解处理天气预报风速和实测风速间的误差,将分解结果结合天气预报信息中的其它部分特征作为改进的Transformer模型输入。通过改进麻雀搜索算法(SSA)优化修正模型的关键参数,提高预测准确性。将预测的风速误差与天气预报风速相加即得到修正后的天气预报风速并计算风功率。仿真结果表明,该模型方法在准确性上优于基准模型,验证了所提出的改进组合模型有效性。 展开更多
关键词 风速修正 变分模态分解 改进的变压器 麻雀搜索算法 短期风电功率 数据预处理 天气预报信息
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测 被引量:5
5
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 TRANSFORMER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
考虑时序特征缺失值动态插补的超短期风电功率预测
6
作者 李丹 唐建 +2 位作者 缪书唯 黄烽云 罗娇娇 《中国电机工程学报》 北大核心 2025年第17期6790-6803,I0015,共15页
风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据... 风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据存在缺失值的问题,设计嵌入时滞衰减插补策略的门控循环单元动态捕捉输入特征时间序列中缺失值前后观测值间的不规则时滞关系,并通过带掩码的自相关分析,确定输入特征的最佳时窗长度和时滞衰减率函数的初始参数;基于门控循环单元提取的时序信息,进一步构建序列到序列的预测结构,协调历史和预测时刻输入特征维度不一致的问题,输出未来15 min~4 h的风电功率预测序列。实验结果表明,所提方法在风电数据含缺失值的情景下,与传统的缺失值处理和预测方法相比,具有更高的预测精度和更稳定的预测性能。 展开更多
关键词 超短期风电功率预测 时序特征缺失值 自相关分析 时滞衰减率函数 序列到序列模型
在线阅读 下载PDF
增强的超短期风电功率预测:一种PatchTST-POA-VMD-iTransformer混合模型
7
作者 刘新宇 潘宇 +2 位作者 王亚辉 李继方 杨文静 《电力系统保护与控制》 北大核心 2025年第19期68-78,共11页
由于风力发电对天气变化的敏感度高,风电场输出功率随时间变化的波动大,传统预测模型难以对风电场输出功率进行准确预测,也难以对风电预测误差进行有效修正。针对上述问题,提出了一种PatchTST-POA-VMD-iTransformer混合预测模型。首先,... 由于风力发电对天气变化的敏感度高,风电场输出功率随时间变化的波动大,传统预测模型难以对风电场输出功率进行准确预测,也难以对风电预测误差进行有效修正。针对上述问题,提出了一种PatchTST-POA-VMD-iTransformer混合预测模型。首先,基于斯皮尔曼相关系数法进行天气特征与风电功率相关性量化分析,完成数据筛选和预处理。然后,引入PatchTST对风电场输出功率进行初步预测,得到初步预测的功率结果。随后,采用鹈鹕优化算法(pelican optimization algorithm,POA)优化的变模态分解(variational mode decomposition,VMD)对风电预测误差序列进行分解,再使用iTransformer对分解后的误差序列进行预测。最后,将已获得的初步功率预测结果与误差序列预测结果相结合,得到最终的风电功率预测结果。消融实验和对比实验结果表明,所提模型具有较小的预测误差和较优的泛化能力,能够有效提升超短期风电功率预测的精度和可靠性。 展开更多
关键词 风电功率预测 PatchTST 鹈鹕优化算法 变模态分解 iTransformer
在线阅读 下载PDF
基于动态深度学习的风电功率在线预测方法
8
作者 赵洪山 杨铎 +3 位作者 刘欣雨 倪恒毅 张扬帆 林诗雨 《太阳能学报》 北大核心 2025年第9期171-180,共10页
为适应风电出力的随机性,提出一种基于动态深度学习的风电功率在线预测方法。首先,构建基于双向长短期记忆网络和双向门控循环单元的风电功率基准预测模型,根据训练数据集设置初始参数与权重;其次,采用快速霍夫丁漂移检测方法进行风电... 为适应风电出力的随机性,提出一种基于动态深度学习的风电功率在线预测方法。首先,构建基于双向长短期记忆网络和双向门控循环单元的风电功率基准预测模型,根据训练数据集设置初始参数与权重;其次,采用快速霍夫丁漂移检测方法进行风电状态监测,根据检测结果动态更新深度学习模型;最后,引入随机森林回归模型对预测功率误差进行校正,并通过时间窗实现模型的滚动在线预测。验证结果表明,所提算法相较于Transformev方法均方根误差(RMSE)提高5.68%,平均绝对误差(MAE)提高18.56%,相关系数(R2)提高2.06%,具有较好的预测性能,充分证明所提出的方法能有效提升风电功率预测的准确性。 展开更多
关键词 风电功率预测 动态深度学习 在线预测 双向长短期记忆网络 双向门控循环单元 随机森林
在线阅读 下载PDF
融合改进Informer与迁移学习的风电功率预测
9
作者 郭利进 孙淼 衡安阳 《太阳能学报》 北大核心 2025年第7期371-377,共7页
为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型... 为克服风电功率序列的不稳定性导致预测精度低以及一些风电场历史数据有限的问题,提出一种特征交互Informer与迁移学习(FIITL)的风电功率预测模型。首先提出特征交互(FI)机制用双通道输入进一步提取信息,并将迁移学习(TL)引入到预测模型中,提出循环微调迁移学习,将模型从源监测站迁移到目标站,实现在有限历史数据情况下预测性能的提升。最后,通过与传统Informer模型及其他基线预测方法比较,FIITL模型展现了在有限数据情况下的性能优势。 展开更多
关键词 迁移学习 风电功率 预测 INFORMER 特征交互
在线阅读 下载PDF
计及动态时空相关性的多风电场短期功率预测
10
作者 李丹 黄烽云 +3 位作者 杨帆 唐建 罗娇娇 方泽仁 《电力系统及其自动化学报》 北大核心 2025年第2期1-9,共9页
针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征... 针对同一区域内多风电场出力间复杂且动态的时空相关性,提出一种基于注意力时空同步图卷积网络的多风电场短期功率预测模型。首先引入注意力机制量化天气特征对风功率的影响,构建相邻3个时间步的风功率局部时空图,卷积提取局部时空特征;然后用时空同步图卷积层聚合输入时窗的整体时空特征;最后非线性映射输出多风电场未来时段的功率预测结果。实际算例结果表明,所提模型通过学习不同天气条件下风功率的时空动态演变规律,可将多风电场日前功率预测精度提高2.10%~13.94%。 展开更多
关键词 深度学习 风电功率 相关性 时空同步图卷积网络 功率预测
在线阅读 下载PDF
基于SSA-VMD-LIESN的短期风电功率预测方法研究
11
作者 杨宁宁 王怡昕 +1 位作者 吴朝俊 马芝瑞 《太阳能学报》 北大核心 2025年第5期440-447,共8页
短期风电功率预测精度提升可增强电力系统调节能力与消纳水平,并为风电优化决策提供数据支撑。为了提高短期风电功率的预测精度,提出一种基于SSA-VMD-LIESN的预测模型。首先通过麻雀搜寻算法(SSA)求解最优的变分模态分解(VMD)参数,将复... 短期风电功率预测精度提升可增强电力系统调节能力与消纳水平,并为风电优化决策提供数据支撑。为了提高短期风电功率的预测精度,提出一种基于SSA-VMD-LIESN的预测模型。首先通过麻雀搜寻算法(SSA)求解最优的变分模态分解(VMD)参数,将复杂的风电功率历史数据分解为不同频率的模态分量。随后通过样本熵计算反映其复杂程度,并将具有相似特征的分量融合重构。最后结合具有良好非线性预测能力的泄漏积分型回声状态网络(LIESN),构成SSA-VMD-LIESN预测模型,并将预测结果与传统LIESN、长短期记忆网络(LSTM)以及BP神经网络进行对比分析。研究结果表明,该模型训练快速,具有较好的短期风电功率预测能力。 展开更多
关键词 风电 预测 变分模态分解 麻雀搜索算法 泄漏积分型回声状态网络
在线阅读 下载PDF
基于自适应频域多层感知器的短期风电功率预测新方法
12
作者 赵万明 郑佐龙 《科学技术与工程》 北大核心 2025年第30期12945-12953,共9页
由于可再生能源在能源行业中的地位日益突出,精准的风电功率预测变得越来越重要。基于多层感知器的深度学习预测方法存在过拟合风险,且难以捕捉长期依赖关系,传统的解决办法多为增加数据量、调整模型参数、使用更复杂的神经网络等,但效... 由于可再生能源在能源行业中的地位日益突出,精准的风电功率预测变得越来越重要。基于多层感知器的深度学习预测方法存在过拟合风险,且难以捕捉长期依赖关系,传统的解决办法多为增加数据量、调整模型参数、使用更复杂的神经网络等,但效果有限。针对上述问题,研究了多层感知器在频域上的特征提取能力,提出了结合频域特征提取与自适应频率选择算法的策略,通过动态调整模型训练过程中各频率分量的权重来选择对预测贡献较大的特征。该策略有效减轻了过拟合现象,提升了模型对长期依赖关系的捕捉能力,并显著提高了预测性能与效率。最后进行两组实例验证,结果表明提出的方法比传统的深度学习预测模型拥有更高的预测精度。 展开更多
关键词 风电功率预测 频域多层感知器 自适应频率选择
在线阅读 下载PDF
基于改进SOA和岭回归赋权的风电负荷组合预测
13
作者 张树国 张俊炜 《华北电力大学学报(自然科学版)》 北大核心 2025年第6期60-68,79,共10页
为促进可再生能源应用和提高电力系统的可靠性,以风力发电负荷数据为研究对象,基于改进海鸥优化算法和岭回归权重赋值对风电负荷变化进行预测。首先,利用互补集合经验模态分解和经验小波变换构成的二次分解方法对原始数据进行去噪处理,... 为促进可再生能源应用和提高电力系统的可靠性,以风力发电负荷数据为研究对象,基于改进海鸥优化算法和岭回归权重赋值对风电负荷变化进行预测。首先,利用互补集合经验模态分解和经验小波变换构成的二次分解方法对原始数据进行去噪处理,以降低原始序列的波动性。然后,使用多策略改进的海鸥优化算法对BP神经网络和最小二乘支持向量机两种模型进行优化,并用优化后的模型分别对分解结果进行建模。最后,基于岭回归权重赋值,融合两个预测模型的输出分量,获得总的负荷值。实验证明:相较于其他预测模型,该模型具有更高的预测精度,能够准确捕捉风力发电负荷的变化趋势,可以为风力发电负荷预测研究提供参考,有望在可再生能源领域的实际应用中发挥积极作用。 展开更多
关键词 风电负荷 CEEMD-EWT二次分解 改进海鸥优化算法 组合预测 岭回归
在线阅读 下载PDF
基于CEEMDAN⁃TCN的短期风电功率预测研究 被引量:1
14
作者 李敖 冉华军 +2 位作者 李林蔚 王新权 高越 《现代电子技术》 北大核心 2025年第2期97-102,共6页
风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分... 风力发电作为可再生能源的重要组成部分,在电力系统规划和日常运行中扮演着重要的角色,准确的短期风电功率预测对于电网的稳定运行和优化调度具有重要意义。为提高短期风电功率预测的准确性,提出一种基于自适应噪声完备集合经验模态分解和时间卷积网络的短期风电功率预测方法。首先利用自适应噪声完备集合经验模态分解对初始风电功率数据进行分解,得到多个相对稳定的子数据序列;然后将其分别作为时间卷积网络的输入,利用时间卷积网络模型进行特征提取和功率预测;最后将所有预测值进行汇总,得到最终的功率预测值。使用宁夏某地区真实风电功率数据进行验证,并与传统预测模型比较,结果表明所提方法具有较高的预测精度,可为风电功率短期预测等相关工作提供相关参考。 展开更多
关键词 短期风电功率预测 自适应噪声的完备集合经验模态分解(CEEMDAN) 时间卷积网络(TCN) 特征提取 预测精度 时间序列分析
在线阅读 下载PDF
基于概念漂移监测与增量更新机制的超短期风电功率在线预测 被引量:1
15
作者 潘春阳 文书礼 +3 位作者 朱淼 侯川川 马建军 孔祥平 《中国电机工程学报》 北大核心 2025年第6期2133-2144,I0008,共13页
高精度风力发电出力预测可为风电优化运行决策提供可靠依据,可提高风电的经济效益,增强风电消纳水平。然而,目前风电功率预测模型在完成离线训练后,往往很少在现实场景中优化迭代,尽管有部分研究对自适应模型进行研究,但仍缺乏针对模型... 高精度风力发电出力预测可为风电优化运行决策提供可靠依据,可提高风电的经济效益,增强风电消纳水平。然而,目前风电功率预测模型在完成离线训练后,往往很少在现实场景中优化迭代,尽管有部分研究对自适应模型进行研究,但仍缺乏针对模型在线优化的探讨,难以满足风电功率快速精准调节需求。该文基于概念漂移监测与增量更新机制,提出一种结合风力发电波动性识别与预测模型实时优化迭代的超短期风电功率在线预测方法。首先,基于历史风电场数据,利用对冲深度学习算法搭建双通道对冲循环神经网络作为预训练模型;其次,在现实的风电功率预测场景中,通过概念漂移监测算法捕捉发电序列中数据的分布变化,分析风力发电的波动性;最后,利用基于对冲算法与在线学习的增量更新机制,对预测模型进行优化迭代,对模型中每个模块的权重进行实时调整,增强模型对于波动场景的适应性。通过真实场景仿真模拟,相较于传统的离线预测模型,该文所提方法能更好地适应现实风电快速波动场景,有效提升风力发电预测的精度与准确性。 展开更多
关键词 在线学习 对冲算法 概念漂移监测 超短期预测 风电功率预测
在线阅读 下载PDF
基于迁移学习和自编码器的极端天气自适应短期风电功率预测 被引量:1
16
作者 李宇佳 陈富豪 +3 位作者 阎洁 葛畅 韩爽 刘永前 《电力系统自动化》 北大核心 2025年第16期85-95,共11页
针对寒潮、台风、覆冰等极端天气下风电功率预测精度不足的问题,提出基于气象因子的极端天气事件判别方法,以及基于迁移学习和自编码器的极端天气事件自适应短期风电功率预测方法。首先,通过分析气象要素和机组出力间的耦合特性,定义极... 针对寒潮、台风、覆冰等极端天气下风电功率预测精度不足的问题,提出基于气象因子的极端天气事件判别方法,以及基于迁移学习和自编码器的极端天气事件自适应短期风电功率预测方法。首先,通过分析气象要素和机组出力间的耦合特性,定义极端天气判别标准,识别未来将要发生的天气事件类型。其次,基于自编码器预测模型的自相关机制增加长时间序列信息利用率,采用迁移学习的“预训练-微调”策略,先利用正常天气下的充足样本对预测模型预训练,再针对极端天气下有限样本数据进行微调,根据判别得到的天气事件,自适应地采用该类天气事件下的预测模型进行短期风电功率预测。选取12个风电场的数据集进行分析,通过分析模型在极端天气和所有天气条件下的预测表现,验证了所提方法的有效性。实验结果表明,所提方法可准确预知未来是否会发生极端天气事件,并大幅提升极端天气事件下的短期风电功率预测精度。 展开更多
关键词 极端天气 风电功率预测 自编码器 预训练 微调 迁移学习
在线阅读 下载PDF
基于不变学习的超短期风电功率预测
17
作者 李玉浩 阎洁 +2 位作者 王函 韩爽 刘永前 《动力工程学报》 北大核心 2025年第10期1696-1703,共8页
由于天气状况、机组控制策略等外部因素的复杂性,未来预测数据常常偏离训练数据分布,从而导致超短期风电功率预测模型精度显著下降。为解决该问题,提出了基于不变学习的超短期风电功率预测方法,该方法通过联合优化环境推理模块与不变特... 由于天气状况、机组控制策略等外部因素的复杂性,未来预测数据常常偏离训练数据分布,从而导致超短期风电功率预测模型精度显著下降。为解决该问题,提出了基于不变学习的超短期风电功率预测方法,该方法通过联合优化环境推理模块与不变特征学习模块,学习不变特征与功率间映射关系,实现鲁棒性建模。结果表明:与2个基准模型相比,所提方法的归一化均方根误差和归一化平均绝对误差分别降低1.19~1.30百分点和0.41~0.68百分点。 展开更多
关键词 超短期 风电功率预测 分布外 不变学习
在线阅读 下载PDF
技术要素耦合作用下我国退役风电设备资源化潜力研究 被引量:1
18
作者 郭慧娟 唐守娟 +4 位作者 孔令强 郭云 刘广鑫 张力小 石磊 《中国环境科学》 北大核心 2025年第4期2358-2368,共11页
基于Stella系统动力学建模平台,耦合风机单机容量、发电方式等技术要素以及使用寿命的影响,构建了我国退役风机报废量预测模型,系统分析与模拟不同情景下风机设备的报废量,并量化回收废旧风机设备资源化规模及其碳减排潜力.结果表明,(1... 基于Stella系统动力学建模平台,耦合风机单机容量、发电方式等技术要素以及使用寿命的影响,构建了我国退役风机报废量预测模型,系统分析与模拟不同情景下风机设备的报废量,并量化回收废旧风机设备资源化规模及其碳减排潜力.结果表明,(1)设计寿命情景下,我国风机安装量2006~2038年快速增长,2047年到达波谷后再次增长,风机报废规模快速上升,不同单机容量的风机报废量达峰时间随着单机容量的增大逐渐后移;(2)设计寿命情景下2060年风机及基础废弃物各组成成分产生量分别为:钢铁1367.24万t、铝19.72万t、铜76.23万t、塑料13.77万t、玻璃钢176.44万t、电子器件16.23万t、永磁体2.77万t、润滑油1.10万t、混凝土3476.36万t;(3)2025~2060年,短寿命、设计寿命、长寿命情景下报废风机材料累计闭环回收利用可分别满足总材料需求的49.5%、41.1%、32.7%,以报废风机中钢铁、铝、铜及永磁体为例,短寿命、设计寿命、长寿命情景下2025~2060年100%资源化利用累计碳减排量分别为24654.2,17594.7和12218.4万t.延长风机寿命,并根据直驱和双馈以及不同单机容量风机的报废结果建立健全风机设备回收体系,同时强化资源再生利用能力,提高资源循环利用效率,推进报废风机中钢铁等高值设备再制造,将有效降低风机产业生命周期温室气体排放,助力于我国碳达峰碳中和战略目标的实现. 展开更多
关键词 风电 报废量预测 系统动力学模型 资源化潜力 碳减排
在线阅读 下载PDF
考虑风光不确定性的虚拟电厂合作博弈调度及收益分配策略 被引量:3
19
作者 宋铎洋 薛田良 +3 位作者 李艺瀑 涂金童 毕宇豪 王满康 《电力工程技术》 北大核心 2025年第1期193-206,共14页
虚拟电厂(virtual power plant,VPP)通过先进的控制技术高效聚合容量小、数量多的分布式能源(distributed energy resource,DER)参与电力市场交易。随着DER数量的增加,其出力的波动性以及聚合后的收益问题需要解决。基于此,提出一种在... 虚拟电厂(virtual power plant,VPP)通过先进的控制技术高效聚合容量小、数量多的分布式能源(distributed energy resource,DER)参与电力市场交易。随着DER数量的增加,其出力的波动性以及聚合后的收益问题需要解决。基于此,提出一种在日前电力市场下,多类型DER聚合于VPP的协同博弈调度模型。首先,提出多类型DER聚合于VPP的运营框架。其次,由于风光出力的不确定性严重影响系统的运行,建立基于变分模态分解(variational modal decomposition,VMD)和改进的双向多门控长短期记忆(bidirectional multi gated long short-term memory,Bi-MGLSTM)网络的组合预测模型。然后,同类型DER形成联盟,并以售电收益最大化为目标,构建VPP多联盟的合作博弈调度模型,为实现联盟及成员间收益分配的公平性,设计多因素改进shapley值法和基于奇偶循环核仁法的两阶段细化收益分配方案。最后,算例结果表明,所提方法能有效提高风光功率的预测精度,实现VPP内联盟间合作互补运行,保证了多个主体间收益分配的公平性与合理性。 展开更多
关键词 虚拟电厂(VPP) 分布式能源(DER) 风光预测 合作博弈 SHAPLEY值 核仁法
在线阅读 下载PDF
考虑高比例风电波动的多注意力TCN电价预测方法 被引量:1
20
作者 李子凯 杨波 +3 位作者 周忠堂 李新 陈凤伟 焦润海 《电测与仪表》 北大核心 2025年第3期138-146,共9页
在风电占比较高的电力系统中,风电的强波动性使得短期内的供需形势发生剧烈变化,增加了电价的不确定性和预测难度。文中分析了电价的周期性特点,重点研究了风电波动性对电价波动的影响,利用负荷和风电功率构造了一种能够表征其他高成本... 在风电占比较高的电力系统中,风电的强波动性使得短期内的供需形势发生剧烈变化,增加了电价的不确定性和预测难度。文中分析了电价的周期性特点,重点研究了风电波动性对电价波动的影响,利用负荷和风电功率构造了一种能够表征其他高成本发电方式对电价影响的新特征;然后将注意力机制与时间卷积网络结合,建立了双层多头自注意力时间卷积网络来挖掘电价时序规律以及外部因素对电价的影响作用;通过北欧电力市场真实数据进行预测效果验证,结果表明文中方法与现有电价预测方法相比将平均绝对误差(mean absolute error,MAE)值降低约45%。 展开更多
关键词 电价预测 风电功率波动 发电成本 时间卷积网络 多头注意力机制
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部