Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature...Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and u...This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and utilized in locating the most likely faulty elements in nonlinear circuits.The validity of the proposed method is verified by both extensive computer simulations and practical examples.One simulation example is presented in the paper.展开更多
A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessi...A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.展开更多
The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the ...The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits.展开更多
To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreemen...To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.展开更多
A method for robust analog fault diagnosis using hybrid neural networks is proposed. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of element tolerances and r...A method for robust analog fault diagnosis using hybrid neural networks is proposed. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of element tolerances and reduce testing time. The proposed approach is based on the fault dictionary diagnosis method and backward propagation neural network (BPNN) and the adaptive resonance theory (ART) neural network. Simulation results show that the method is robust and fast for fault diagnosis of analog circuits with tolerances.展开更多
Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog c...Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog circuits and in diagnoses the ARNIC 429 reception circuit of aviation aircraft avionics. The C cluster algorithm can make the amount of the fuzzy rule automatically and can create an initial fuzzy rule database of fault diagnosis. A type of fuzzy neural network and a fault tree were generated. The algorithm avoids the disadvantage that gets into the part of optimum circumstance. A validate application was implemented, which proves that the method is effective. Therefore, the method is superior to the traditional methods in fault diagnosis, and the efficiency is heavily improved.展开更多
An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutin...An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.展开更多
Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impeda...Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impedance andthe fault resistance.The distributed parameter model and the modal transformationare also employed.Depending on modal transformation,the coupled equations of the lines are converted intodecoupled ones.Inthis way,the mutual coupling effects between adjacent circuits of the lines are eliminatedandtherefore an accurate fault location can be achieved.The proposed methodis tested via digital simulationusing EMTP in conjunction with MATLAB.The test results corroborate the high accuracy of the proposedmethod.展开更多
中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结...中点钳位(neutral point clamped,NPC)型三电平逆变器并网工作环境恶劣,IGBT面临单管与双管同时故障的挑战,这使得故障特征之间的差异变得非常微弱,进而导致双管故障的识别精度难以有效提升。为此,提出了一种新的故障诊断方法,该方法结合了多通道的二维递归融合图和轻量化多尺度残差(lightweightmultiscale convolutional residuals,LMCR)网络。首先,通过仿真获取三相电流信号作为故障信号;再利用递归图(recurrence plot,RP)将三相电流信号分别转化为二维图并进行多通道融合,以捕捉时间序列中的周期性、突变点和趋势等特征;最后,将递归融合图作为输入,输入到LMCR模型中进行故障识别,LMCR模型整合多级Inception结构和残差网络,用于提取不同尺度的特征并融合这些特征,从而保证网络的梯度消失和爆炸。实验结果显示,该方法在IGBT故障识别中表现出色,无噪声环境下平均识别准确率达100%,噪声环境中也达到了92.53%,充分证明了该方法具有较强的特征提取能力和优异的抗噪性能。展开更多
基金the National Natural Science Fundation of China (60372001 90407007)the Ph. D. Programs Foundation of Ministry of Education of China (20030614006).
文摘Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
文摘This paper deals with fault isolation in nonlinear analog circuits with tolerance under an insufficient number of independent voltage measurements.A neural network-based L1-norm optimization approach is proposed and utilized in locating the most likely faulty elements in nonlinear circuits.The validity of the proposed method is verified by both extensive computer simulations and practical examples.One simulation example is presented in the paper.
基金Project(Z132012)supported by the Second Five Technology-based in Science and Industry Bureau of ChinaProject(YWF1103Q062)supported by the Fundemental Research Funds for the Central Universities in China
文摘A relevance vector machine (RVM) based fault diagnosis method was presented for non-linear circuits. In order to simplify RVM classifier, parameters selection based on particle swarm optimization (PSO) and preprocessing technique based on the kurtosis and entropy of signals were used. Firstly, sinusoidal inputs with different frequencies were applied to the circuit under test (CUT). Then, the resulting frequency responses were sampled to generate features. The frequency response was sampled to compute its kurtosis and entropy, which can show the information capacity of signal. By analyzing the output signals, the proposed method can detect and identify faulty components in circuits. The results indicate that the fault classes can be classified correctly for at least 99% of the test data in example circuit. And the proposed method can diagnose hard and soft faults.
基金supported by the National Natural Science Foundation of China (61202078 61071139)the National High Technology Research and Development Program of China (863 Program)(SQ2011AA110101)
文摘The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits.
基金supported by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology and Planning(KETEP)grant funded by the Korea Government Ministry of Knowledge Economy(No.2009T100200067)
文摘To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.
文摘A method for robust analog fault diagnosis using hybrid neural networks is proposed. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of element tolerances and reduce testing time. The proposed approach is based on the fault dictionary diagnosis method and backward propagation neural network (BPNN) and the adaptive resonance theory (ART) neural network. Simulation results show that the method is robust and fast for fault diagnosis of analog circuits with tolerances.
基金Project (MHRD0705) supported by the Science Foundation by Civil Aviation Administrator of ChinaProject (07ZCKFGX01500) supported by Tianjin Science Foundation and Technology Key Project
文摘Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog circuits and in diagnoses the ARNIC 429 reception circuit of aviation aircraft avionics. The C cluster algorithm can make the amount of the fuzzy rule automatically and can create an initial fuzzy rule database of fault diagnosis. A type of fuzzy neural network and a fault tree were generated. The algorithm avoids the disadvantage that gets into the part of optimum circumstance. A validate application was implemented, which proves that the method is effective. Therefore, the method is superior to the traditional methods in fault diagnosis, and the efficiency is heavily improved.
文摘An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.
文摘Anewfault location algorithmfor double-circuit transmissionlines is described inthis paper.Theproposed method uses data extractedfromtwo ends of the transmissionlines andthus eliminates the effects ofthe source impedance andthe fault resistance.The distributed parameter model and the modal transformationare also employed.Depending on modal transformation,the coupled equations of the lines are converted intodecoupled ones.Inthis way,the mutual coupling effects between adjacent circuits of the lines are eliminatedandtherefore an accurate fault location can be achieved.The proposed methodis tested via digital simulationusing EMTP in conjunction with MATLAB.The test results corroborate the high accuracy of the proposedmethod.