The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a mult...The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.展开更多
A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method a...A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method and the deterministic stability analysis method of earth slope. The performance function and its derivatives in slope stability analysis under seismic loadings were approximated by a trained multi-layer feed-forward neural network with differentiable transfer functions. The statistical moments calculated from the performance function values and the corresponding gradients using neural network were then used in the first order second moment method for the calculation of the reliability index in slope safety analysis. Two earth slope examples were presented for illustrating the applicability of the proposed approach. The new method is effective in slope reliability analysis. And it has potential application to other reliability problems of complicated engineering structure with a considerably large number of random variables.展开更多
The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predict...The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening.展开更多
提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基...提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基本控制方程和密度演化方程;然后,建立了光伏支撑体系的有限元分析模型,包括结构受力模型、荷载组合形式、网格划分算法等。仿真模型中考虑了结构所受荷载与结构本身的随机性,共计6个随机变量和44个代表点。为提升算法分析效率,提出了Abaqus⁃PDEM的联合仿真算法,仿真分析表明,光伏支撑体系的失效模式主要为应力控制和位移控制两种,后者影响更为明显,基本荷载组合工况下的可靠度为0.928。随着风力等级的提高,结构可靠性逐渐降低,在高风速区间(大于40 m/s),结构本身的不确定性会高估结构的可靠性水平,在设计中应予以关注。展开更多
文摘The swinging-loading process is essential for automatic artillery loading systems.This study focuses on the problems of reliability analysis that affect swinging-loading positioning accuracy.A dynamic model for a multi degree-of-freedom swinging-loading-integrated rigid-flexible coupling system is established.This model is based on the identification of key parameters and platform experiments.Based on the spatial geometric relationship between the breech and loader during modular charge transfer and the possible maximum interference depth of the modular charge,a new failure criterion for estimating the reliability of swinging-loading positioning accuracy is proposed.Considering the uncertainties in the operation of the pendulum loader,the direct probability integration method is introduced to analyze the reliability of the swinging-loading positioning accuracy under three different charge numbers.The results indicate that under two and four charges,the swinging-loading process shows outstanding reliability.However,an unstable stage appears when the swinging motion occurred under six charges,with a maximum positioning failure probability of 0.0712.A comparison between the results obtained under the conventional and proposed criteria further reveals the effectiveness and necessity of the proposed criterion.
文摘A new method was proposed to cope with the earth slope reliability problem under seismic loadings. The algorithm integrates the concepts of artificial neural network, the first order second moment reliability method and the deterministic stability analysis method of earth slope. The performance function and its derivatives in slope stability analysis under seismic loadings were approximated by a trained multi-layer feed-forward neural network with differentiable transfer functions. The statistical moments calculated from the performance function values and the corresponding gradients using neural network were then used in the first order second moment method for the calculation of the reliability index in slope safety analysis. Two earth slope examples were presented for illustrating the applicability of the proposed approach. The new method is effective in slope reliability analysis. And it has potential application to other reliability problems of complicated engineering structure with a considerably large number of random variables.
基金the financial support from the China Postdoctora Science Foundation (project No. 2021M690406)the financial supports from the National Natural Science Foundation of China (project Nos. 51708521, 51778183)
文摘The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening.
文摘提出了考虑多重不确定性的光伏支撑体系(Photovoltaic Support System,PSS)随机动力可靠性分析方法。首先,构建了基于概率密度演化理论(Probability Density Evolution Method,PDEM)的光伏支撑体系可靠性分析模型,包括概率守恒方程、基本控制方程和密度演化方程;然后,建立了光伏支撑体系的有限元分析模型,包括结构受力模型、荷载组合形式、网格划分算法等。仿真模型中考虑了结构所受荷载与结构本身的随机性,共计6个随机变量和44个代表点。为提升算法分析效率,提出了Abaqus⁃PDEM的联合仿真算法,仿真分析表明,光伏支撑体系的失效模式主要为应力控制和位移控制两种,后者影响更为明显,基本荷载组合工况下的可靠度为0.928。随着风力等级的提高,结构可靠性逐渐降低,在高风速区间(大于40 m/s),结构本身的不确定性会高估结构的可靠性水平,在设计中应予以关注。