The first complete formulation of special relativity (SR) is that of Einstein who postulated the light speed invariance. The second level assumes the longitudinal length contractions and the slowing down of clock rate...The first complete formulation of special relativity (SR) is that of Einstein who postulated the light speed invariance. The second level assumes the longitudinal length contractions and the slowing down of clock rates by the same factor y-1. This level discusses the role of different synchronizations.In the third level SR is seen as a consequence of the spin motion of the elementary particles. It seems possible to detect the privileged system S for which the electromagnetic radiation due to the spin motion of all the electrons in the universe is isotropic.展开更多
According to some local properties of Lorentz transformation, Einstein stated: 'Vetheitiss greater than that of light have no possibility of existence.' He neglected to point out the applicable range of the sp...According to some local properties of Lorentz transformation, Einstein stated: 'Vetheitiss greater than that of light have no possibility of existence.' He neglected to point out the applicable range of the special theory of relativity. In fact, it could only be applied to the subluminal-speeds. This paper shows that if ones think of the possibility of the existence of the superluminal-speeds and redescribe the special theory of relativity following Einstein's way, it could be supposed that the physical spacetime is a Finsler spacetime, characterized by the metric ds4=gijkldxidxidxkdxl. If so, a new spactime transformation could be found by invariant ds4 and the theory of relativity is discussed on this transformation it is possible that the Finsler spacetime F(x,y) may be endowed with a catastrophic nature. Based on the different properties between the ds2 and ds4, it is discussed that the flat spacetime will also have the catastrophic nature on the Finsler metric ds4. The spacetime transformations and the Physical quantities will suddenly change at the catastrophe set of the spacetime, the light cone. It will be supposed that only the dual velocity of the superluminal-speeds could be observed. If so, a particle with the superluminal-speed v> c could be regarded as its anti-particle with the dual velocity v1=c2/ v< c. On the other hand, it could be assumed that the horizon of the field of the general relativity is also a catastrophic set. If so, a particle with the superluminal-speeds could be projected near the horizon of these fields, and the particle will move on the sauce-like curves. It is very interesting that, in the Schwarzschild fields, the theoretical calculation for the sauce-like curves should be in agreement with tie data of the superluminal expansion of extragalactic radio sources observed year after year. (see Gao, 1992b).The ca- tastrophe of spacetime has some deep cosmological means. According to the some interested subjects in the Process of evolution of the universe the catastrophe nature of the Finsler spacetime and its cosmological impli= cations are discussed. It is shown that the nature of the universal evolution could be attributed to the geometric features of the Finsler spacetime. (see Cao, 1993)展开更多
有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点...有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.展开更多
文摘The first complete formulation of special relativity (SR) is that of Einstein who postulated the light speed invariance. The second level assumes the longitudinal length contractions and the slowing down of clock rates by the same factor y-1. This level discusses the role of different synchronizations.In the third level SR is seen as a consequence of the spin motion of the elementary particles. It seems possible to detect the privileged system S for which the electromagnetic radiation due to the spin motion of all the electrons in the universe is isotropic.
基金The project was supported by National Natural Science Foundation of China.
文摘According to some local properties of Lorentz transformation, Einstein stated: 'Vetheitiss greater than that of light have no possibility of existence.' He neglected to point out the applicable range of the special theory of relativity. In fact, it could only be applied to the subluminal-speeds. This paper shows that if ones think of the possibility of the existence of the superluminal-speeds and redescribe the special theory of relativity following Einstein's way, it could be supposed that the physical spacetime is a Finsler spacetime, characterized by the metric ds4=gijkldxidxidxkdxl. If so, a new spactime transformation could be found by invariant ds4 and the theory of relativity is discussed on this transformation it is possible that the Finsler spacetime F(x,y) may be endowed with a catastrophic nature. Based on the different properties between the ds2 and ds4, it is discussed that the flat spacetime will also have the catastrophic nature on the Finsler metric ds4. The spacetime transformations and the Physical quantities will suddenly change at the catastrophe set of the spacetime, the light cone. It will be supposed that only the dual velocity of the superluminal-speeds could be observed. If so, a particle with the superluminal-speed v> c could be regarded as its anti-particle with the dual velocity v1=c2/ v< c. On the other hand, it could be assumed that the horizon of the field of the general relativity is also a catastrophic set. If so, a particle with the superluminal-speeds could be projected near the horizon of these fields, and the particle will move on the sauce-like curves. It is very interesting that, in the Schwarzschild fields, the theoretical calculation for the sauce-like curves should be in agreement with tie data of the superluminal expansion of extragalactic radio sources observed year after year. (see Gao, 1992b).The ca- tastrophe of spacetime has some deep cosmological means. According to the some interested subjects in the Process of evolution of the universe the catastrophe nature of the Finsler spacetime and its cosmological impli= cations are discussed. It is shown that the nature of the universal evolution could be attributed to the geometric features of the Finsler spacetime. (see Cao, 1993)
文摘有效辨识关键节点对增强网络韧性、提高运行能力具有重要意义,为提高航路网络关键节点识别的准确性,提出基于TOPSIS(technique for order preference by similarity to an ideal solution)-灰色关联分析法的综合评价方法和航路网络节点分级方法.首先,从复杂网络统计特性、交通流量特性、脆弱性3个方面构建航路网络关键节点评价指标体系;通过引入相对熵改进逼近理想值排序法,并结合灰色关联分析法综合评价航路点重要程度,采用基于K-means聚类方法有效划分航路节点等级;最后,以民航空管实际运行数据为实例,开展关键节点识别.研究表明:相较于单一指标,所建航路网络节点评价指标体系获得的评价结果更加全面;改进TOPSIS-灰色关联分析方法相较于传统TOPSIS法评价结果更加准确;所提识别方法发现了我国华东地区典型繁忙航路网络中有29个关键节点,其在网络结构及交通流量方面具有关键作用.