期刊文献+
共找到58,176篇文章
< 1 2 250 >
每页显示 20 50 100
Fast Object Perception in The Subcortical Pathway:a Commentary on Wang et al.’s Paper in Human Brain Mapping(2023)
1
作者 MA Hao-Yun WEI Yu-Yin HU Li-Ping 《生物化学与生物物理进展》 北大核心 2025年第7期1904-1908,共5页
The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new functio... The subcortical visual pathway is generally thought to be involved in dangerous information processing,such as fear processing and defensive behavior.A recent study,published in Human Brain Mapping,shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception.Rapid object processing is a critical function of visual system.Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property(TP).However,the mechanism of rapid TP processing remains unclear.The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation(TMS).They find that a subcortical magnocellular pathway is responsible for the early processing of TP,and this subcortical processing of TP accelerates object recognition.Based on their findings,we propose a novel training approach called subcortical magnocellular pathway training(SMPT),aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction. 展开更多
关键词 transcranial magnetic stimulation(TMS) subcortical pathway magnocellular pathway topological property object perception
在线阅读 下载PDF
Anchor-based的接触网棒式绝缘子定位及破损检测
2
作者 苟军年 张昕悦 杜愫愫 《铁道学报》 北大核心 2025年第5期39-46,共8页
及时检测出有破损缺陷的绝缘子是保证接触网稳定运行的重要任务。针对接触网中棒式绝缘子伞裙密集破损检测难度大、主流深度检测算法参数量多导致模型难以部署的问题,提出一种Anchor-based单阶段绝缘子定位及破损检测深度网络模型。该... 及时检测出有破损缺陷的绝缘子是保证接触网稳定运行的重要任务。针对接触网中棒式绝缘子伞裙密集破损检测难度大、主流深度检测算法参数量多导致模型难以部署的问题,提出一种Anchor-based单阶段绝缘子定位及破损检测深度网络模型。该网络继承了RetinaNet的底层结构思想,选用轻量化的RegNetX-800MF作为主干网络,并在其后加入可变形卷积,降低网络参数量的同时增强网络的特征提取能力;对特征金字塔的部分层加入新的激活函数,降低对模型结构的破坏;搭建ATSS检测网络头部,提升密集型目标的样本采样质量和模型的定位准确性。试验结果表明,所提方法的mAP_(50)、mAP分别为81.7%、54.8%,模型的复杂度、参数仅为47.65 GFLOPs、16.43×10~6。所提方法为铁路接触网绝缘子的自动化巡检及后续部署奠定了理论基础。 展开更多
关键词 绝缘子定位 破损检测 深度学习 视觉目标检测 轻量化
在线阅读 下载PDF
MSFNet:A Network for Lunar Impact Crater Detection Based on Enhanced Feature Fusion with Digital Elevation Model
3
作者 HE Weidong LAI Jialong +3 位作者 ZHONG Zhicheng CUI Feifei XU Yi ZHANG Xiaoping 《深空探测学报(中英文)》 北大核心 2025年第2期190-204,共15页
Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalo... Lunar impact crater detection is crucial for lunar surface studies and spacecraft landing missions,yet deep learning still struggles with accurately detecting small craters,especially when relying on incomplete catalogs.In this work,we integrate Digital Elevation Model(DEM)data to construct a high-quality dataset enriched with slope information,enabling a detailed analysis of crater features and effectively improving detection performance in complex terrains and low-contrast areas.Based on this foundation,we propose a novel two-stage detection network,MSFNet,which leverages multi-scale adaptive feature fusion and multisize ROI pooling to enhance the recognition of craters across various scales.Experimental results demonstrate that MSFNet achieves an F1 score of 74.8%on Test Region1 and a recall rate of 87%for craters with diameters larger than 2 km.Moreover,it shows exceptional performance in detecting sub-kilometer craters by successfully identifying a large number of high-confidence,previously unlabeled targets with a low false detection rate confirmed through manual review.This approach offers an efficient and reliable deep learning solution for lunar impact crater detection. 展开更多
关键词 object detection deep learning impact crater DEM
在线阅读 下载PDF
The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
4
作者 XU Hui-Lin XI Huan-Jun +4 位作者 DUAN Tao LI Jing LI Dan-Dan WANG Kai ZHU Chun-Yan 《生物化学与生物物理进展》 北大核心 2025年第1期223-232,共10页
Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that... Objective Autism spectrum disorder(ASD)is a neurodevelopmental condition characterized by difficulties with communication and social interaction,restricted and repetitive behaviors.Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits,which are closely related to the core symptoms of ASD.Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities.Therefore,this study explores the behavior of children with ASD in capturing attention to changes in topological properties.Methods Our study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing(TD)age-matched controls.In an attention capture task,we recorded the saccadic behaviors of children with ASD and TD in response to topological change(TC)and non-topological change(nTC)stimuli.Saccadic reaction time(SRT),visual search time(VS),and first fixation dwell time(FFDT)were used as indicators of attentional bias.Pearson correlation tests between the clinical assessment scales and attentional bias were conducted.Results This study found that TD children had significantly faster SRT(P<0.05)and VS(P<0.05)for the TC stimuli compared to the nTC stimuli,while the children with ASD did not exhibit significant differences in either measure(P>0.05).Additionally,ASD children demonstrated significantly less attention towards the TC targets(measured by FFDT),in comparison to TD children(P<0.05).Furthermore,ASD children exhibited a significant negative linear correlation between their attentional bias(measured by VS)and their scores on the compulsive subscale(P<0.05).Conclusion The results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection.This atypical attention may affect the child’s cognitive and behavioral development,thereby impacting their social communication and interaction.In sum,our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD. 展开更多
关键词 ATTENTION autism spectrum disorder perceptual object topological perception
在线阅读 下载PDF
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
5
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
在线阅读 下载PDF
Risk Assessment Framework and Algorithm of Power Systems Based on the Partitioned Multi-objective Risk Method 被引量:11
6
作者 XIE Shaoyu WANG Xiuli WANG Xifan 《中国电机工程学报》 EI CSCD 北大核心 2011年第34期I0005-I0005,7,共1页
针对平均风险指标无法区分高损失-低概率事件及低损失-高概率事件的缺点,提出了电力系统的分割多目标风险分析框架。该框架将电力系统的风险状态细分为低损失、中等损失和高损失3个风险范围,并提出3个损失范围条件风险函数和条件风险概... 针对平均风险指标无法区分高损失-低概率事件及低损失-高概率事件的缺点,提出了电力系统的分割多目标风险分析框架。该框架将电力系统的风险状态细分为低损失、中等损失和高损失3个风险范围,并提出3个损失范围条件风险函数和条件风险概率的概念。采用经典的容量停运表模型,建立了这些条件期望指标的计算方法。对IEEE-RTS及TH-RTS2000系统进行了分割多目标风险评估,研究不同负荷水平下系统风险在3个损失范围的分布及转移情况,并分析损失分割点对系统风险的影响。通过分割多目标风险分析,风险分析者和决策者可以权衡系统的平均风险以及高、中、低损失范围的条件期望风险,从而对系统的风险状况有一个全面和深入的了解。 展开更多
关键词 英文摘要 内容介绍 编辑工作 期刊
在线阅读 下载PDF
Deep Expansion of the Object Scope of Contemporary Female Literature Research --On. the "Marginalized" Female Creation in Late Qing Dynasty and Republican Period
7
作者 Zhao Huifang 《学术界》 CSSCI 北大核心 2016年第3期269-274,共6页
If we take Chinese modern literary history( female) as the"center",in which the female creation is very limited,a large amount of female compositions in late Qing Dynasty and R epublican period were "ma... If we take Chinese modern literary history( female) as the"center",in which the female creation is very limited,a large amount of female compositions in late Qing Dynasty and R epublican period were "marginalized",even in the "hidden "state. These "marginalized"female writings,not only are in a large number,but also constitute the foundation of Chinese modern female literature creation,the significance and value cannot be ignored. To seek the strategy and approach for the research on the "marginalized"female creation in late Qing Dynasty and R epublican period,helps to deeply discuss the possibility to expand the object scope of female literature research,to find a newgrowing point of female literature research,and form conversation between female literary history writing and current theory and practice of the"R ewriting Literary History". 展开更多
关键词 文学创作 边缘化 女性 民国 晚清 增长点 中国 作品
在线阅读 下载PDF
HASKSM-MOSTOA算法求解烟组推手多目标优化问题
8
作者 郑维 林玉红 +1 位作者 慎龙舞 朱文魁 《机械设计与制造》 北大核心 2025年第7期219-225,共7页
针对卷烟包装机中烟组推手结构优化设计存在效率低、设计成本高、建模误差大等问题,提出一种基于自适应混合加点Kriging-MOSTOA的多目标优化方法。首先,为提高烟组推手优化代理模型的精度,引入了一种自适应混合加点Kriging代理模型(HASK... 针对卷烟包装机中烟组推手结构优化设计存在效率低、设计成本高、建模误差大等问题,提出一种基于自适应混合加点Kriging-MOSTOA的多目标优化方法。首先,为提高烟组推手优化代理模型的精度,引入了一种自适应混合加点Kriging代理模型(HASKSM)来构建烟组推手设计参数与性能之间的映射关系;其次,融合快速非支配排序策略、多项式变异算子和新的拥挤度距离计算策略,提出一种多目标乌燕鸥优化算法(MOSTOA),用于求解烟组推手多目标优化设计问题。最后,构建基于HASKSM-MOSTOA的烟组多目标优化设计流程,以测试函数和烟组推手工程案例验证了所提方法的可行性。结果表明:MOSTOA算法具有良好的寻优性能;同时,采用HASKSM-MOSTOA方法能够有效提高烟组推手多目标优化设计精度和效率,为提高卷烟包装设备优化设计提供了理论指导。 展开更多
关键词 烟组推手 自适应混合加点 多目标乌燕鸥算法 Kriging代理模型 多目标优化设计
在线阅读 下载PDF
Fast-BiYOLOv8n:基于注意力机制的机场异物检测轻量化改进
9
作者 郭九霞 李金润 +2 位作者 吴晓雷 林放 沈志鹏 《科学技术与工程》 北大核心 2025年第23期10057-10066,共10页
为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络... 为解决YOLOv8n算法在机场异物检测中存在计算复杂度高、计算资源消耗大的问题,通过在YOLOv8n算法中引入轻量化模块的方法研究了机场异物检测的问题,提出了Fast-BiYOLOv8n算法。首先,设计了C2f_FasterEMA模块并引入YOLOv8n算法的骨干网络中,该模块融合了FasterBlock模块和高效多尺度注意力(efficient multi-scale attention,EMA)注意力机制,增强了图像的特征提取能力,同时降低了算法计算量;其次,在路径聚合网络(path aggregation network,PANet,)网络架构中融合了骨干网络中的P2特征层并设计了双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)网络架构,增加了跨尺度连接促进了不同特征图之间的信息融合,同时加入C2f_Faster模块提高了特征融合的效率并进一步降低了算法的计算量;最后,通过改进损失函数为Inner-CIoU(intersection over union,complete intersection over union loss)加快了算法的收敛速度,提高了检测准确率。结果表明,Fast-BiYOLOv8n算法的检测准确率达到99.0%,召回率为98.8%,平均精度均值(mean average precision,mAP)提升了3.5个百分点,达到99.3%,参数量比原模型降低了27%,模型的权重大小降低了21%,实现了在降低算法参数量的同时,提升检测准确率的目的。 展开更多
关键词 目标检测 机场异物 轻量化改进 注意力机制 机场安全
在线阅读 下载PDF
基于改进的CycleGAN和YOLOv8联合雾天道路环境感知算法
10
作者 岳永恒 雷文朋 《华南理工大学学报(自然科学版)》 北大核心 2025年第2期48-57,共10页
针对极端雾霾天气条件下,智能车辆对道路环境感知识别精度降低的问题,提出了基于改进的CycleGAN和YOLOv8联合雾天环境感知算法。首先以CycleGAN算法为框架对图像进行去雾预处理,在生成器网络中引入自注意力机制提高网络的特征提取能力,... 针对极端雾霾天气条件下,智能车辆对道路环境感知识别精度降低的问题,提出了基于改进的CycleGAN和YOLOv8联合雾天环境感知算法。首先以CycleGAN算法为框架对图像进行去雾预处理,在生成器网络中引入自注意力机制提高网络的特征提取能力,同时为了减少与真实图像的色彩差异,引入自正则化颜色损失函数;其次,在目标检测部分,首先采用轻量化的GhostConv网络替换原主干网络,以降低计算量;而后,在颈部网络加入了GAM注意力机制,有效提高了网络对于全局信息的交互能力;最后,通过WIoU损失函数,减小低质样本所产生的有害梯度,提高模型的收敛速度。应用RESIDE数据集和BDD100k数据集对该算法进行实验验证。结果表明:去雾后图像与原图像的结构相似度为85%,相较于原CycleGAN算法和AODNet算法的峰值信噪比(PSNR)和结构相似性(SSIM)分别提高2.24 dB和15.4个百分点、2.5 dB和36.3个百分点。其中,改进的YOLOv8算法与原算法相比,其精确率、召回率和平均检测精度均值分别提升了2.5、1.8和1.1个百分点。实验结果验证了所提出算法的召回率和检测精度等方面优于传统算法,具有一定的实用价值。 展开更多
关键词 智能车辆 环境感知 图像去雾 CycleGan 目标检测 YOLOv8
在线阅读 下载PDF
Redundant discrete wavelet transforms based moving object recognition and tracking 被引量:3
11
作者 Gao Tao Liu Zhengguang Zhang Jun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1115-1123,共9页
A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transf... A method for moving object recognition and tracking in the intelligent traffic monitoring system is presented. For the shortcomings and deficiencies of the frame-subtraction method, a redundant discrete wavelet transform (RDWT) based moving object recognition algorithm is put forward, which directly detects moving objects in the redundant discrete wavelet transform domain. An improved adaptive mean-shift algorithm is used to track the moving object in the follow up frames. Experimental results show that the algorithm can effectively extract the moving object, even though the object is similar to the background, and the results are better than the traditional frame-subtraction method. The object tracking is accurate without the impact of changes in the size of the object. Therefore the algorithm has a certain practical value and prospect. 展开更多
关键词 traffic monitoring moving object recognition moving object tracking redundant discrete wavelet.
在线阅读 下载PDF
PillarTNet:基于Transformer的三维目标检测模型
12
作者 韩建栋 苏佳 《小型微型计算机系统》 北大核心 2025年第9期2168-2175,共8页
针对三维点云目标检测中传统的卷积神经网络在特征提取阶段因下采样导致分辨率降低,影响小目标的识别准确性问题,本文提出一种基于Transformer的三维目标检测模型:PillarTNet.该模型首先使用双重注意力融合模块强化特征编码,然后通过区... 针对三维点云目标检测中传统的卷积神经网络在特征提取阶段因下采样导致分辨率降低,影响小目标的识别准确性问题,本文提出一种基于Transformer的三维目标检测模型:PillarTNet.该模型首先使用双重注意力融合模块强化特征编码,然后通过区域扩张注意力模块提取特征,保持整个过程伪图像分辨率不变,更有利于小目标的检测,同时引入区域移位机制促进不同区域的信息交流.但是注意力操作会存在大量空体素,可能增加大目标的漏检与误检风险,为此,对检测头采用空体素关注模块以缓解这一问题.在KITTI数据集上的实验结果显示:PillarTNet在确保Car和Cyclist检测精度的同时,Pedestrian的检测在3个难度等级的AP 3D分别达到了62.48%、53.21%和49.57%,且本模型在推理速度和内存需求方面均表现出色,充分验证了PillarTNet的优越性和适应性. 展开更多
关键词 三维目标检测 点云 TRanSFORMER 双重注意力融合 空体素关注
在线阅读 下载PDF
一种改进的Faster R-CNN遥感图像多目标检测模型研究
13
作者 苗茹 李祎 +3 位作者 周珂 张俨娜 常然然 孟更 《计算机工程》 北大核心 2025年第8期292-304,共13页
针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融... 针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融合浅层和高层语义信息,进一步加强特征融合效果;最后,在分类和回归分支中,添加动态权重机制,促进网络在训练过程中更关注高质量候选框,提高目标定位和分类的精确度。在RSOD数据集上的实验结果表明,所提模型相较于Faster R-CNN模型每秒浮点运算次数(FLOPs)大幅度减少,并且模型的mAP@0.5∶0.95提高了10.7百分点,平均召回率提高10.6百分点。相较于其他主流检测模型,所提模型在降低漏检率的同时,取得了更高的精度,能显著提高复杂背景下遥感图像的检测精度。 展开更多
关键词 遥感图像 多目标检测 Faster R-CNN Swin Transformer模块 平衡特征金字塔 动态权重机制
在线阅读 下载PDF
基于Interbrand模型的纺织服装品牌价值评价研究
14
作者 许菱 廖人燕 +1 位作者 郑婧然 钟少君 《丝绸》 北大核心 2025年第7期78-87,共10页
为了深入探究纺织服装行业品牌价值,文章基于Interbrand模型从消费者视角、市场视角和财务视角三个维度构建评价指标体系。并选取安踏体育、李宁、特步国际及361度四家主营运动品类的纺织服装企业为研究对象,通过收集消费者评价数据与... 为了深入探究纺织服装行业品牌价值,文章基于Interbrand模型从消费者视角、市场视角和财务视角三个维度构建评价指标体系。并选取安踏体育、李宁、特步国际及361度四家主营运动品类的纺织服装企业为研究对象,通过收集消费者评价数据与公开财务数据评估其品牌价值。研究结果表明,消费者认知在品牌价值评价体系中占据最大权重,在具体的三级指标中品牌覆盖率是提升品牌价值最为关键的指标。综合评价表明,安踏体育品牌价值评价得分最高,其财务维度优势显著。文章最后分别从政府和企业角度提出品牌管理策略,旨在为企业提供多维度的品牌价值提升建议。 展开更多
关键词 纺织服装行业 品牌价值 消费者认知 市场表现 财务表现 主客观组合赋权
在线阅读 下载PDF
Evolutionary many objective optimization based on bidirectional decomposition 被引量:1
15
作者 LYU Chengzhong LI Weimin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第2期319-326,共8页
The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot sprea... The decomposition based approach decomposes a multi-objective problem into a series of single objective subproblems, which are optimized along contours towards the ideal point. But non-dominated solutions cannot spread uniformly, since the Pareto front shows different features, such as concave and convex. To improve the distribution uniformity of non-dominated solutions, a bidirectional decomposition based approach that constructs two search directions is proposed to provide a uniform distribution no matter what features problems have. Since two populations along two search directions show differently on diversity and convergence, an adaptive neighborhood selection approach is presented to choose suitable parents for the offspring generation. In order to avoid the problem of the shrinking search region caused by the close distance of the ideal and nadir points, a reference point update approach is presented. The performance of the proposed algorithm is validated with four state-of-the-art algorithms. Experimental results demonstrate the superiority of the proposed algorithm on all considered test problems. 展开更多
关键词 ManY objective optimization BIDIRECTIONAL DECOMPOSITION REFERENCE UPDATE EVOLUTIONARY algorithm
在线阅读 下载PDF
Manipulator-based autonomous inspections at road checkpoints:Application of faster YOLO for detecting large objects 被引量:8
16
作者 Qing-xin Shi Chang-sheng Li +5 位作者 Bao-qiao Guo Yong-gui Wang Huan-yu Tian Hao Wen Fan-sheng Meng Xing-guang Duan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期937-951,共15页
With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced ... With the increasing number of vehicles,manual security inspections are becoming more laborious at road checkpoints.To address it,a specialized Road Checkpoints Robot(RCRo)system is proposed,incorporated with enhanced You Only Look Once(YOLO)and a 6-degree-of-freedom(DOF)manipulator,for autonomous identity verification and vehicle inspection.The modified YOLO is characterized by large objects’sensitivity and faster detection speed,named“LF-YOLO”.The better sensitivity of large objects and the faster detection speed are achieved by means of the Dense module-based backbone network connecting two-scale detecting network,for object detection tasks,along with optimized anchor boxes and improved loss function.During the manipulator motion,Octree-aided motion control scheme is adopted for collision-free motion through Robot Operating System(ROS).The proposed LF-YOLO which utilizes continuous optimization strategy and residual technique provides a promising detector design,which has been found to be more effective during actual object detection,in terms of decreased average detection time by 68.25%and 60.60%,and increased average Intersection over Union(Io U)by 20.74%and6.79%compared to YOLOv3 and YOLOv4 through experiments.The comprehensive functional tests of RCRo system demonstrate the feasibility and competency of the multiple unmanned inspections in practice. 展开更多
关键词 Robot applications object detection Vehicle inspection Identity verification You only look once(YOLO)
在线阅读 下载PDF
High efficient moving object extraction and classification in traffic video surveillance 被引量:1
17
作者 Li Zhihua Zhou Fan Tian Xiang Chen Yaowu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期858-868,共11页
Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is ... Moving object extraction and classification are important problems in automated video surveillance systems. A background model based on region segmentation is proposed. An adaptive single Gaussian background model is used in the stable region with gradual changes, and a nonparametric model is used in the variable region with jumping changes. A generalized agglomerative scheme is used to merge the pixels in the variable region and fill in the small interspaces. A two-threshold sequential algorithmic scheme is used to group the background samples of the variable region into distinct Gaussian distributions to accelerate the kernel density computation speed of the nonparametric model. In the feature-based object classification phase, the surveillance scene is first partitioned according to the road boundaries of different traffic directions and then re-segmented according to their scene localities. The method improves the discriminability of the features in each partition. AdaBoost method is applied to evaluate the relative importance of the features in each partition respectively and distinguish whether an object is a vehicle, a single human, a human group, or a bike. Experimental results show that the proposed method achieves higher performance in comparison with the existing method. 展开更多
关键词 background model nonparametric model adaptive single Gaussian model object classification
在线阅读 下载PDF
Oriented Bounding Box Object Detection Model Based on Improved YOLOv8
18
作者 ZHAO Xin-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期67-75,114,共10页
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ... In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes. 展开更多
关键词 Remote sensing image Oriented bounding boxes object detection Small target detection YOLOv8
在线阅读 下载PDF
引入特征融合和Transformer模型预测器的目标跟踪算法
19
作者 龚小梅 张轶 胡术 《计算机工程与应用》 北大核心 2025年第6期254-262,共9页
近年来判别相关滤波器(DCF)在视觉跟踪领域取得了巨大的成功,然而大多数相关滤波跟踪器仅依赖主干网提取的最后一层特征,忽视了低层丰富的目标结构信息。基于此,提出了一种基于特征融合模块和Transformer结构模型预测器的目标跟踪算法... 近年来判别相关滤波器(DCF)在视觉跟踪领域取得了巨大的成功,然而大多数相关滤波跟踪器仅依赖主干网提取的最后一层特征,忽视了低层丰富的目标结构信息。基于此,提出了一种基于特征融合模块和Transformer结构模型预测器的目标跟踪算法。引入了一个金字塔形的特征融合模块,能有效整合低层特征和高层特征。使用采用非对称位置编码方案的Transformer结构预测目标模型权重,以释放模型的表达能力。提出了一个特征优化模块以根据模型权重优化搜索特征。与现有的方法相比,该算法实现了更优的特征表示和更准确的目标定位。在Tracking-Net、LaSOT和UAV123三个主流数据集上的实验结果表明,跟踪器获得了突出性能。 展开更多
关键词 特征融合 TRanSFORMER 目标跟踪 特征优化 目标分类
在线阅读 下载PDF
An accurate detection algorithm for time backtracked projectile-induced water columns based on the improved YOLO network 被引量:1
20
作者 LUO Yasong XU Jianghu +1 位作者 FENG Chengxu ZHANG Kun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期981-991,共11页
During a sea firing training,the intelligent detection of projectile-induced water column targets in a firing video is the prerequisite for and critical to the automatic calculation of miss distance,while the correct ... During a sea firing training,the intelligent detection of projectile-induced water column targets in a firing video is the prerequisite for and critical to the automatic calculation of miss distance,while the correct and precise calculation of miss distance is directly affected by the accuracy,false alarm rate and time delay of detection.After analyzing the characteristics of projectile-induced water columns,an accurate detection algorithm for time backtracked projectile-induced water columns based on the improved you only look once(YOLO)network is put forward.The capability and accuracy of detecting projectileinduced water column targets with the conventional YOLO network are improved by optimizing the anchor box through K-means clustering and embedding the squeeze and excitation(SE)attention module.The detection area is limited by adopting a sea-sky line detection algorithm based on gray level co-occurrence matrix(GLCM),so as to effectively eliminate such disturbances as ocean waves and ship wakes,and lower the false alarm rate of projectile-induced water column detection.The improved algorithm increases the mAP50 of water column detection by 30.3%.On the basis of correct detection,a time backtracking algorithm is designed with mean shift to track images containing projectile-induced water column in reverse time sequence.It accurately detects a projectile-induced water column at the time of its initial appearance as well as its pixel position in images,and considerably reduces detection delay,so as to provide the support for the automatic,accurate,and real-time calculation of miss distance. 展开更多
关键词 object recognition projectile-induced water column you only look once(YOLO) K-means squeeze and excitation(SE) mean shift
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部