CMAC(Cerebellar Model Articulation Controller)和PD(Proportional Derivative)复合控制算法有时因输出不平滑会引起加载电机抖动而影响控制效果.通过对该输出不平滑问题进行分析,提出了一种新的提高输出平滑性的改进CMAC复合控制算法...CMAC(Cerebellar Model Articulation Controller)和PD(Proportional Derivative)复合控制算法有时因输出不平滑会引起加载电机抖动而影响控制效果.通过对该输出不平滑问题进行分析,提出了一种新的提高输出平滑性的改进CMAC复合控制算法,该方法通过新的权值更新公式,在权值更新时直接达到减小误差和提高输出平滑性的目的.仿真和实验结果表明:改进后的算法能够有效提高输出平滑性,降低了21%的稳态误差,且保证在加载时有良好的稳定性和抗干扰能力.展开更多
针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信...针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信号,以系统的当前控制误差作为CMAC的训练信号.提出了利用误差在线自适应调整学习率的方法,消除了常规前馈型CMAC的过学习和不稳定现象.建立了无人机舵面电动加载系统的数学模型,给出了具体的控制结构和算法.仿真结果表明:该方法有效抑制了加载系统的多余力矩,增强了系统的稳定性,明显改善了舵面电动加载系统的动态性能.展开更多
针对一种气动人工肌肉驱动的弹簧质量位置控制系统,设计了一个带有自适应模糊小脑模型(Cerebellar Model Articulation Controller,CMAC)在线逼近的离散趋近律滑模混合控制器.该混合控制器中离散趋近律滑模策略产生控制器的输出;自适应...针对一种气动人工肌肉驱动的弹簧质量位置控制系统,设计了一个带有自适应模糊小脑模型(Cerebellar Model Articulation Controller,CMAC)在线逼近的离散趋近律滑模混合控制器.该混合控制器中离散趋近律滑模策略产生控制器的输出;自适应模糊CMAC用以逼近气动人工肌肉系统中的不确定项.CMAC网络权值的在线学习调整保证了自适应模糊CMAC的逼近性能.对离散抗饱和PID控制器(DASPID)与自适应模糊CMAC离散滑模混合控制器(HybridC)的位置跟踪控制性能进行了对比实验.实验结果表明,HybridC较之DASPID有更好的位置跟踪控制性能.当期望参考输入为正弦信号时,DASPID的最大位置跟踪误差为±1.5 mm;而HybridC的最大位置跟踪误差仅为±0.7 mm,平均位置跟踪误差大约仅为±0.2 mm.并且,离散滑模所固有的抖振现象得到了有效的抑制.展开更多
针对传统PI(Proportional-Integral)控制无法从根本上解决静态和动态性能之间、跟踪设定值与抑制扰动能力之间存在的矛盾,提出一种新的交流感应电机控制算法,即采用小脑模型神经网络CMAC(Cerebellar Model Articulation Controller)和PI...针对传统PI(Proportional-Integral)控制无法从根本上解决静态和动态性能之间、跟踪设定值与抑制扰动能力之间存在的矛盾,提出一种新的交流感应电机控制算法,即采用小脑模型神经网络CMAC(Cerebellar Model Articulation Controller)和PID(Proportional-Integral-Differential)组成的复合控制器实现系统前馈反馈控制,以取代传统的双环控制系统中的转速外环PI控制器.在此基础上给出基于32位单片机MC68332的PWM(Pulse-Width Modulation)算法,实现交流感应电动机调速.Matlab仿真结果表明,运用CMAC控制方法的系统具有响应快、超调小、鲁棒性好的特点,较常规PI控制具有更好的动、静态性能.展开更多
文摘CMAC(Cerebellar Model Articulation Controller)和PD(Proportional Derivative)复合控制算法有时因输出不平滑会引起加载电机抖动而影响控制效果.通过对该输出不平滑问题进行分析,提出了一种新的提高输出平滑性的改进CMAC复合控制算法,该方法通过新的权值更新公式,在权值更新时直接达到减小误差和提高输出平滑性的目的.仿真和实验结果表明:改进后的算法能够有效提高输出平滑性,降低了21%的稳态误差,且保证在加载时有良好的稳定性和抗干扰能力.
文摘针对无人机舵面电动加载系统具有非线性及多余力矩的特点,提出了一种自适应CMAC(Cerebellar Model Articulation Controller)神经网络与自适应神经元控制器并联构成复合控制结构.该控制策略以系统的指令输入和实际输出作为CMAC的激励信号,以系统的当前控制误差作为CMAC的训练信号.提出了利用误差在线自适应调整学习率的方法,消除了常规前馈型CMAC的过学习和不稳定现象.建立了无人机舵面电动加载系统的数学模型,给出了具体的控制结构和算法.仿真结果表明:该方法有效抑制了加载系统的多余力矩,增强了系统的稳定性,明显改善了舵面电动加载系统的动态性能.
文摘针对传统PI(Proportional-Integral)控制无法从根本上解决静态和动态性能之间、跟踪设定值与抑制扰动能力之间存在的矛盾,提出一种新的交流感应电机控制算法,即采用小脑模型神经网络CMAC(Cerebellar Model Articulation Controller)和PID(Proportional-Integral-Differential)组成的复合控制器实现系统前馈反馈控制,以取代传统的双环控制系统中的转速外环PI控制器.在此基础上给出基于32位单片机MC68332的PWM(Pulse-Width Modulation)算法,实现交流感应电动机调速.Matlab仿真结果表明,运用CMAC控制方法的系统具有响应快、超调小、鲁棒性好的特点,较常规PI控制具有更好的动、静态性能.