期刊文献+

基于焚烧运行参数的垃圾热值软测量模型 被引量:5

Indirect Measurement Model for Waste Heating Value Based on Incineration Operational Parameters
在线阅读 下载PDF
导出
摘要 在垃圾焚烧过程中,入炉垃圾热值的变化对燃烧的稳定性会产生很大的影响.针对在垃圾焚烧过程中垃圾热值难以在线测量的实际状况,采用基于小脑神经网络的垃圾热值预测模型,利用垃圾发电厂在线运行数据作为输入参数,实现垃圾热值的在线预测.研究表明,该软测量模型具有实时性好、能够预测垃圾热值整体变化趋势等优点.该模型初步应用于某垃圾发电厂,结果表明,其具有较好的实时性与准确度,在垃圾燃烧过程自动控制系统中具有较好的应用前景. In the refuse incineration process, the stability of incineration is always influenced strongly the heating value of refuse. However, it is difficult to get an on-line method of measuring refuse heating value in practice, due to the varying sources and unstable composition of refuse. A heating value prediction model of refuse based on cerebellar model articulation controller (CMAC) was built, in which the monitoring parameters of incinerator were used as inputs data. Compared with other models, the new model can predict the integrated variation of the waste heating value and realize the real-time measurement. With this model, the heating value of refuse was predicted successfully in a refuse power plant, indicating that it is a feasible way for the soft measurement process and the incineration control system.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2007年第1期81-85,共5页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50276019)
关键词 固体废弃物 在线监测 小脑神经网络模型 热值 solid waste on-line monitoring cerebellar model articulation controller heating value
作者简介 谢承利(1980-),男,博士研究生; 联系人:陆继东。jdlu@mail.hust.cdu.cn.
  • 相关文献

参考文献10

二级参考文献32

  • 1邓志东,孙增圻,张再兴.一种模糊CMAC神经网络[J].自动化学报,1995,21(3):288-294. 被引量:50
  • 2孙增圻,邓志东.类似CMAC的模糊神经网络及其在控制中的应用[J].清华大学学报(自然科学版),1996,36(5):17-23. 被引量:8
  • 3王中安.对深圳垃圾电站焚烧锅炉及热力系统评介[J].广东电力,1996,9(4):55-58. 被引量:6
  • 4李友善 李军.模糊控制理论及其在过程控制中的应用[M].北京:国防工业出版社,1992..
  • 5Goromaru, Hanabusa, Yonezawa Iwakawa. Refuse incineration process models of shaking grate refuse incinerator [J].Automatic Measurement Control Society, 1989,25(1): 62-68.
  • 6Onishi K. Fuzzy control of municipal refuse incineration plant [J]. Automatic Measurement Control Society, 1991,27(3): 326-332.
  • 7Leskens M, Van Kessel L B M, Van den Hof P M J. MIMO closed-loop identification of an MSW incinerator[J]. Control Engineering Practice ,2002, 10(3): 315-326.
  • 8Chen W C, Chang N B, Chen J C. GA-based fuzzy neural controller design for municipal incinerators[J].Fuzzy Sets and Systems,2002,129(3):343-369.
  • 9Bridle J. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition[ A]. In: Fogelman F, Herault J eds. Neuro-Computing: Algorithms, Architectures, and Applications [C]. London: Sprin
  • 10Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems, 1988,2(3): 321-355.

共引文献29

同被引文献72

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部