期刊文献+
共找到487篇文章
< 1 2 25 >
每页显示 20 50 100
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:12
1
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function (rbf neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
在线阅读 下载PDF
Target maneuver trajectory prediction based on RBF neural network optimized by hybrid algorithm 被引量:12
2
作者 XI Zhifei XU An +2 位作者 KOU Yingxin LI Zhanwu YANG Aiwu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期498-516,共19页
Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a ta... Target maneuver trajectory prediction plays an important role in air combat situation awareness and threat assessment.To solve the problem of low prediction accuracy of the traditional prediction method and model,a target maneuver trajectory prediction model based on phase space reconstruction-radial basis function(PSR-RBF)neural network is established by combining the characteristics of trajectory with time continuity.In order to further improve the prediction performance of the model,the rival penalized competitive learning(RPCL)algorithm is introduced to determine the structure of RBF,the Levenberg-Marquardt(LM)and the hybrid algorithm of the improved particle swarm optimization(IPSO)algorithm and the k-means are introduced to optimize the parameter of RBF,and a PSR-RBF neural network is constructed.An independent method of 3D coordinates of the target maneuver trajectory is proposed,and the target manuver trajectory sample data is constructed by using the training data selected in the air combat maneuver instrument(ACMI),and the maneuver trajectory prediction model based on the PSR-RBF neural network is established.In order to verify the precision and real-time performance of the trajectory prediction model,the simulation experiment of target maneuver trajectory is performed.The results show that the prediction performance of the independent method is better,and the accuracy of the PSR-RBF prediction model proposed is better.The prediction confirms the effectiveness and applicability of the proposed method and model. 展开更多
关键词 trajectory prediction K-MEANS improved particle swarm optimization(IPSO) Levenberg-Marquardt(LM) radial basis function(rbf)neural network
在线阅读 下载PDF
基于RBF神经网络的4-PPPS并联机构位姿误差补偿
3
作者 金奕扬 李磊 +3 位作者 许家伟 汪建华 王国伟 许润康 《现代制造工程》 北大核心 2025年第4期140-150,共11页
为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误... 为了解决船舶调姿机构结构误差引起的船舶总段对接精度下降问题,以4-PPPS并联机构为研究对象,首先采用闭环矢量法建立包含32个误差项的动平台位姿误差模型,然后具体分析其中便于测量的16种结构误差参数对动平台位姿精度的影响规律。误差分析结果表明,沿轨道方向移动副长度误差对4-PPPS并联机构运动精度影响最大,在4条支链均存在误差的情况下,Z轴方向动平台位姿误差达到1.5 mm。同时,为克服传统误差参数辨识难度较大的问题,提出一种基于鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化径向基函数(Radial Basis Function,RBF)神经网络的补偿方法。该方法将位姿误差转化为驱动关节长度误差,通过神经网络建立动平台理论位姿与驱动关节长度误差的预测模型,并采用鲸鱼优化算法优化网络参数,最终获得驱动关节长度补偿量,用来修正动平台的实际位姿并完成误差补偿。经过仿真验证,该方法能够有效提升4-PPPS并联机构的运动精度,动平台在X、Y、Z轴方向的误差均值分别由0.169、0.188、0.159 mm降至0.002、0.001、0.003 mm,误差最大值分别由0.208、0.231、0.195 mm降至0.012、0.001、0.019 mm,平均位姿精度提高了85.07%,补偿效果显著。 展开更多
关键词 并联机构 误差分析 误差补偿 rbf神经网络 鲸鱼优化算法
在线阅读 下载PDF
An elasto-plastic constitutive model of moderate sandy clay based on BC-RBFNN 被引量:2
4
作者 彭相华 王智超 +2 位作者 罗涛 余敏 罗迎社 《Journal of Central South University》 SCIE EI CAS 2008年第S1期47-50,共4页
Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in diffe... Application research of neural networks to geotechnical engineering has become a hotspot nowadays.General model may not reach the predicting precision in practical application due to different characteristics in different fields.In allusion to this,an elasto-plastic constitutive model based on clustering radial basis function neural network(BC-RBFNN) was proposed for moderate sandy clay according to its properties.Firstly,knowledge base was established on triaxial compression testing data;then the model was trained,learned and emulated using knowledge base;finally,predicting results of the BC-RBFNN model were compared and analyzed with those of other intelligent model.The results show that the BC-RBFNN model can alter the training and learning velocity and improve the predicting precision,which provides possibility for engineering practice on demanding high precision. 展开更多
关键词 ELASTO-PLASTIC CONSTITUTIVE model artificial neural network BC-rbfNN(based on clustering radial basis function neural network) MODERATE SANDY clay
在线阅读 下载PDF
基于RBF神经网络整定PID的电液比例系统位置控制研究 被引量:4
5
作者 陈翰文 徐巧玉 +1 位作者 徐恺 张正 《机电工程》 CAS 北大核心 2024年第3期371-381,共11页
针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Sim... 针对凿岩机械臂的电液比例系统位置控制精度问题,提出了一种基于径向基函数(RBF)神经网络整定PID的电液比例系统位置控制方法。首先,在AMESim中搭建了阀控非对称液压缸的电液比例系统简化模型,设置了各个模块的参数;然后,利用MATLAB/Simulink搭建了系统闭环控制模型,通过不断更新RBF网络模型并修正PID参数,实现了基于RBF神经网络整定PID的电液比例系统位置控制目的;结合AMESim搭建的电液比例系统模型和Simulink下搭建的控制器进行了联合仿真;最后,基于凿岩台车机械臂实验平台,进行了电液比例系统位置控制实验。仿真结果表明:在受到外部干扰的情况下,RBF神经网络整定PID控制系统能够在0.3 s内控制活塞杆重新运行至目标位置,平均响应时间为1.5 s,位置精度误差不超过5 mm。实验结果表明:与常规PID控制方法相比,RBF神经网络整定PID控制活塞杆位置精度误差降低了75%,位置精度误差在工程实际要求的10 mm范围以内,因此,RBF神经网络整定PID算法可以有效提高电液比例系统的位置控制精度,满足凿岩机械臂实际工作中对电液比例系统位置精度的控制要求。 展开更多
关键词 凿岩机械臂 径向基函数神经网络整定PID 电液比例系统位置控制精度 联合仿真 MATLAB/SIMULINK AMESIM
在线阅读 下载PDF
Modeling and optimum operating conditions for FCCU using artificial neural network 被引量:6
6
作者 李全善 李大字 曹柳林 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1342-1349,共8页
A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF ... A self-organizing radial basis function(RBF) neural network(SODM-RBFNN) was presented for predicting the production yields and operating optimization. Gradient descent algorithm was used to optimize the widths of RBF neural network with the initial parameters obtained by k-means learning method. During the iteration procedure of the algorithm, the centers of the neural network were optimized by using the gradient method with these optimized width values. The computational efficiency was maintained by using the multi-threading technique. SODM-RBFNN consists of two RBF neural network models: one is a running model used to predict the product yields of fluid catalytic cracking unit(FCCU) and optimize its operating parameters; the other is a learning model applied to construct or correct a RBF neural network. The running model can be updated by the learning model according to an accuracy criterion. The simulation results of a five-lump kinetic model exhibit its accuracy and generalization capabilities, and practical application in FCCU illustrates its effectiveness. 展开更多
关键词 radial basis function(rbf neural network self-organizing gradient descent double-model fluid catalytic cracking unit(FCCU)
在线阅读 下载PDF
输入饱和约束下自适应RBF神经网络非线性反馈船舶航向控制 被引量:2
7
作者 苏文学 孟祥飞 张强 《上海海事大学学报》 北大核心 2024年第2期14-19,共6页
针对输入饱和约束下外界扰动和模型不确定情况下的船舶航向跟踪控制问题,提出一种自适应径向基函数(radial basis function,RBF)神经网络非线性反馈航向跟踪控制方法。利用自适应RBF神经网络对外界扰动和模型不确定项进行估计,并利用最... 针对输入饱和约束下外界扰动和模型不确定情况下的船舶航向跟踪控制问题,提出一种自适应径向基函数(radial basis function,RBF)神经网络非线性反馈航向跟踪控制方法。利用自适应RBF神经网络对外界扰动和模型不确定项进行估计,并利用最小学习参数法减少计算量;将一个具有误差增益反相关特征的非线性函数嵌入控制律中,设计一种非线性反馈控制方法;利用李雅普诺夫理论证明所有信号在考虑外界扰动和模型不确定的船舶航向跟踪控制系统中都是一致有界的。通过仿真和比较,验证了所设计控制方法的有效性。所做研究可为输入饱和约束下船舶航向跟踪控制提供参考,具有工程实际意义。 展开更多
关键词 船舶航向跟踪 径向基函数(rbf)神经网络 非线性反馈控制 输入饱和
在线阅读 下载PDF
四旋翼飞行器的RBF神经网络鲁棒自适应控制 被引量:1
8
作者 马振伟 白浩 +1 位作者 陈洪波 王劲博 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第5期1620-1628,共9页
针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全... 针对具有模型不确定性和有界外部扰动的四旋翼飞行器,提出了一种基于径向基函数神经网络的鲁棒自适应全局控制方法(RRAC)。所提方法结合了神经网络控制对未知非线性的强拟合能力和鲁棒控制的全局稳定性,解决了神经网络控制仅能实现半全局一致最终有界的问题,实现了控制精度和鲁棒性的双重提升。所设计的控制器由在近似域内工作的神经网络控制器和在近似域外工作的鲁棒控制器组成。引入一种新型切换函数来实现两者之间的平滑切换,以保证闭环系统的所有信号是全局一致最终有界的。利用Lyapunov函数和Barbalat引理严格证明了非线性四旋翼飞行器系统的稳定性。仿真表明,所设计的控制器在模型不确定性和有界外部扰动下对参考轨迹依旧保持良好的跟踪性能,且跟踪误差趋近于零。 展开更多
关键词 四旋翼飞行器 rbf神经网络 鲁棒自适应控制 平滑切换函数 全局一致最终有界
在线阅读 下载PDF
基于SLM-RBF的配电网分布式光伏集群智能划分策略 被引量:1
9
作者 卜强生 吕朋蓬 +4 位作者 李炜祺 罗飞 俞婧雯 窦晓波 胡秦然 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第10期1534-1543,共10页
分布式电源大规模分散接入给配电网的优化调度带来计算上的维数灾难,需要对分布式电源进行集群以降低调控难度,因此合理的集群划分十分重要.同时,配电网实时量测数据不全造成分布式电源进行实时集群划分难度大、时间效率低,因此提出一... 分布式电源大规模分散接入给配电网的优化调度带来计算上的维数灾难,需要对分布式电源进行集群以降低调控难度,因此合理的集群划分十分重要.同时,配电网实时量测数据不全造成分布式电源进行实时集群划分难度大、时间效率低,因此提出一种智能局部移动(SLM)算法与径向基神经网络相结合的分布式电源集群智能划分策略.首先,选取有功和无功功率调节范围以及有功和无功功率-电压的灵敏度作为集群划分的指标,构造相似度矩阵并基于SLM形成分布式电源的集群划分方案库.然后,离线建立电压拟合模型,拟合可实时观测节点的功率与电压之间的关系;同时,离线建立电压-划分结果模型,在线通过电压得到实时划分结果,创新性地解决了潮流模型缺失时无法进行集群划分的问题,提高了集群划分的实时性.最后,在MATLAB平台通过仿真计算验证了算法的合理性和优越性. 展开更多
关键词 智能局部移动算法 径向基神经网络 集群划分 电压拟合
在线阅读 下载PDF
Parameter Estimation of RBF-AR Model Based on the EM-EKF Algorithm 被引量:6
10
作者 Yanhui Xi Hui Peng Hong Mo 《自动化学报》 EI CSCD 北大核心 2017年第9期1636-1643,共8页
在线阅读 下载PDF
基于GRA-RBF神经网络模型的煤矿安全风险预控管理安全风险评价研究 被引量:5
11
作者 夏永亮 《中国矿业》 北大核心 2024年第9期51-57,共7页
煤矿安全风险预控管理因素复杂,在实际评价过程中,层级混乱导致安全风险评价输出的MAPE数值较小,使得煤矿安全风险评价结果缺乏准确性。针对煤矿安全风险预控管理问题,提出了一种基于灰色关联分析(GRA)与径向基函数(RBF)神经网络模型的... 煤矿安全风险预控管理因素复杂,在实际评价过程中,层级混乱导致安全风险评价输出的MAPE数值较小,使得煤矿安全风险评价结果缺乏准确性。针对煤矿安全风险预控管理问题,提出了一种基于灰色关联分析(GRA)与径向基函数(RBF)神经网络模型的安全风险评价方法。首先,融合大量煤矿环境数据,构建多层级安全风险评价体系,全面考量各层次及要素对安全风险的影响。其次,通过GRA算法,依据安全风险紧急程度确定关键预控管理指标,确保评价的精准性与针对性。最后,利用RBF神经网络的强大非线性映射能力,特别是其径向基函数对高权重安全风险指标的精细处理,并定义神经网络每层拓扑结构处理过程,实现评价结果的输出。为验证该方法的有效性,本文准备了多样化的安全风险数据集,并进行降维处理以生成不同数量的安全指标,匹配不同的聚类参数。在对比实验中,将新方法与两种已成熟应用的安全风险评价方法并行测试,以MAPE作为核心评价指标。研究结果显示,本文所设计的基于GRA-RBF神经网络模型的安全风险评价方法输出的MAPE数值显著提升,表明其能够更准确地预测高风险安全评价指标,对于煤矿安全风险预控管理工作提供了相应的风险评价标准,在一定程度上保证了煤矿安全工作的顺利开展,能够为煤矿安全风险预控管理提供强有力的技术支持和决策依据。 展开更多
关键词 GRA-rbf神经网络 煤矿安全风险 预控管理 径向基函数 安全等级 MAPE数值
在线阅读 下载PDF
基于APID-RBF神经网络的光伏MPPT方法 被引量:1
12
作者 赵子睿 潘鹏程 吴婷 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期152-158,共7页
针对光照强度急速变化和局部阴影时光伏发电系统最大功率点追踪响应速度慢、多峰值等问题,提出一种基于RBF神经网络与自适应PID控制相结合的控制方法。首先,采用RBF神经网络对环境的实时变化直接跟踪光伏最大功率点。然后,利用自适应PI... 针对光照强度急速变化和局部阴影时光伏发电系统最大功率点追踪响应速度慢、多峰值等问题,提出一种基于RBF神经网络与自适应PID控制相结合的控制方法。首先,采用RBF神经网络对环境的实时变化直接跟踪光伏最大功率点。然后,利用自适应PID的辅助修正,抑制光伏电池输出功率的波动。神经网络能提升在复杂环境下的跟踪速度,自适应PID能增强对神经网络误差的消除能力,提升跟踪精度。仿真结果表明,APIDRBF双控策略具有稳态性能高和控制精度高等优点,能有效提高光伏发电效率和稳定性。 展开更多
关键词 局部阴影 径向基函数神经网络 自适应PID 最大功率点跟踪 光伏发电效率
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
13
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-rbfNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
孤岛模式下基于VSG的光储发电系统多机并联运行策略
14
作者 张萍 李扬 《全球能源互联网》 北大核心 2025年第1期98-109,共12页
随着光伏发电装机容量的大幅增加,电力系统呈现“低惯性、低阻尼”特性,虚拟同步发电机(virtual synchronous generators,VSG)技术可以提高系统稳定性和供电可靠性。针对孤岛模式下光储-VSG并联系统由于线路阻抗差异和负载投切等原因导... 随着光伏发电装机容量的大幅增加,电力系统呈现“低惯性、低阻尼”特性,虚拟同步发电机(virtual synchronous generators,VSG)技术可以提高系统稳定性和供电可靠性。针对孤岛模式下光储-VSG并联系统由于线路阻抗差异和负载投切等原因导致的系统环流及功率分配不均问题,提出一种协同自适应控制策略。首先,通过系统无功功率偏差动态调整虚拟阻抗值,实现无功功率的精确分配,从而抑制系统稳态环流。其次,为提升系统动态特性和抑制负载投切过程中系统的振荡,建立双输入三输出径向基函数(radial basis function,RBF)神经网络对系统关键参数进行优化。最后,建立3台光储-VSG并联模型,设定不同容量比进行仿真分析,验证了所提控制策略能更好地抑制系统环流,保证系统稳定运行。 展开更多
关键词 光储发电系统 虚拟同步发电机 动态虚拟阻抗 rbf神经网络 环流抑制
在线阅读 下载PDF
基于RBF神经网络分位数回归的电力负荷概率密度预测方法 被引量:101
15
作者 何耀耀 许启发 +1 位作者 杨善林 余本功 《中国电机工程学报》 EI CSCD 北大核心 2013年第1期93-98,共6页
针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负... 针对电力系统短期负荷预测问题,在现有的组合预测和概率性区间预测的基础上,提出了基于RBF神经网络分位数回归的概率密度预测方法,得出未来一天中任意时期负荷的概率密度函数,可以得到比点预测和区间预测更多的有用信息,实现了对未来负荷完整概率分布的预测。中国某市实际数据的预测结果表明,提出的概率密度预测方法不仅能得出较为精确的点预测结果,而且能够获得短期负荷完整的概率密度函数预测结果。 展开更多
关键词 负荷预测 径向基函数 神经网络 分位数回归 概率密度函数
在线阅读 下载PDF
基于BP与RBF级联神经网络的日负荷预测 被引量:37
16
作者 陈刚 周杰 +1 位作者 张雪君 张忠静 《电网技术》 EI CSCD 北大核心 2009年第12期101-105,共5页
在采用分段预测方法的基础上,利用小规模BP(back propagation)神经网络学习时间短和径向基函数(radial basis function,RBF)神经网络自身训练速度快的优点,提出了基于BP和RBF网络的级联神经网络日负荷预测模型,将影响日负荷变化的非负... 在采用分段预测方法的基础上,利用小规模BP(back propagation)神经网络学习时间短和径向基函数(radial basis function,RBF)神经网络自身训练速度快的优点,提出了基于BP和RBF网络的级联神经网络日负荷预测模型,将影响日负荷变化的非负荷因素(气象、日类型等)与历史负荷因素分别加入BP和RBF网络中分开考虑,进一步简化了预测模型。计算实例表明,该模型较一般级联神经网络模型收敛更快速、高效,预测精度有了很大提高。 展开更多
关键词 日负荷预测 BP神经网络 径向基函数神经网络 级联神经网络
在线阅读 下载PDF
基于优化的RBF神经网络模式识别新方法 被引量:22
17
作者 李国友 姚磊 +1 位作者 李惠光 吴惕华 《系统仿真学报》 CAS CSCD 北大核心 2006年第1期181-184,共4页
提出了一种基于Hough变换优化的RBF神经网络模式识别新方法,该方法把Hough变换应用于RBF神经网络的参数确定中,实现了RBF神经网络的隐层节点数和数据中心值的自适应获取,提高了RBF神经网络的泛化能力。仿真结果表明:此改进的RBF网络用... 提出了一种基于Hough变换优化的RBF神经网络模式识别新方法,该方法把Hough变换应用于RBF神经网络的参数确定中,实现了RBF神经网络的隐层节点数和数据中心值的自适应获取,提高了RBF神经网络的泛化能力。仿真结果表明:此改进的RBF网络用于模式识别中具有识别能力强,计算量小,识别速度快的优点,具有广阔的应用推广前景。 展开更多
关键词 HOUGH变换 rbf神经网络 函数逼近 模式识别 泛化能力
在线阅读 下载PDF
基于RBF神经网络的短期负荷预测方法综述 被引量:71
18
作者 彭显刚 胡松峰 吕大勇 《电力系统保护与控制》 EI CSCD 北大核心 2011年第17期144-148,共5页
介绍了基于RBF神经网络的电力系统短期负荷预测方法的相关概念,论述其具体实现途径。通过类比分析的方法对该类预测方法改进的过程进行回顾,指出其在实践中取得的进步。阐述了一些比较成熟的基于RBF神经网络预测模型的基本原理和技术特... 介绍了基于RBF神经网络的电力系统短期负荷预测方法的相关概念,论述其具体实现途径。通过类比分析的方法对该类预测方法改进的过程进行回顾,指出其在实践中取得的进步。阐述了一些比较成熟的基于RBF神经网络预测模型的基本原理和技术特点,并对它们进行了评价。根据电力系统运行的实际特点和面临的新情况,从算法改进、原始负荷数据筛选和如何结合实际负荷特点等三方面对该方法进行分析。探讨了该领域持续改进的发展空间,指出了该领域进一步发展的技术趋势。 展开更多
关键词 短期负荷预测 人工神经网络 rbf径向基神经网络 粒子群优化 智能单粒子优化
在线阅读 下载PDF
基于RBF神经网络的齿轮箱故障诊断 被引量:21
19
作者 冷军发 荆双喜 吴中青 《机械强度》 CAS CSCD 北大核心 2010年第1期17-20,共4页
阐述径向基函数(radial base function,RBF)神经网络的基本原理和算法,将其应用于齿轮箱故障诊断与识别,建立齿轮箱的BRF故障诊断模型,并与BP(back propagation)神经网络、学习率自适应BP神经网络进行对比分析研究。结果表明,RBF神经网... 阐述径向基函数(radial base function,RBF)神经网络的基本原理和算法,将其应用于齿轮箱故障诊断与识别,建立齿轮箱的BRF故障诊断模型,并与BP(back propagation)神经网络、学习率自适应BP神经网络进行对比分析研究。结果表明,RBF神经网络性能优于BP神经网络,具有较快的训练速度、较强的非线性映射能力和精度较高的故障识别能力,非常适用于齿轮箱的状态监测和故障诊断。但在具体应用中应当注意,RBF网络的训练样本必须含有一定的噪声,以提高网络的容噪性能;各类故障的训练样本数不能太少,否则RBF网络的故障分类能力很差。 展开更多
关键词 BP神经网络 径向基函数神经网络 故障诊断 齿轮箱
在线阅读 下载PDF
基于模糊RBF神经网络动态摩擦分块补偿的机器人数字鲁棒滑模控制算法 被引量:8
20
作者 李敏 王家序 +2 位作者 肖科 黄超 徐超 《中国机械工程》 EI CAS CSCD 北大核心 2012年第23期2792-2796,共5页
结合非线性、强耦合的机器人动力学模型,提出了采用3个模糊RBF神经网络对机器人中的不确定项——LuGre动态摩擦进行分块补偿的机器人数字鲁棒滑模控制算法,在线自适应训练非线性动态摩擦项的参数,并分析了该算法的Lyapunov稳定性。通过... 结合非线性、强耦合的机器人动力学模型,提出了采用3个模糊RBF神经网络对机器人中的不确定项——LuGre动态摩擦进行分块补偿的机器人数字鲁棒滑模控制算法,在线自适应训练非线性动态摩擦项的参数,并分析了该算法的Lyapunov稳定性。通过在二自由度机器人上的仿真,证明了该算法具有高精度、高可靠性、高品质、稳定、强鲁棒性等特点。同时发现了该机器人的摩擦模型中存在类菱形吸引子等非线性动力学现象。 展开更多
关键词 模糊rbf神经网络 摩擦补偿 LuGre摩擦模型 不确定性 机器人数字控制
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部