We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corr...We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.展开更多
In this paper, we prove the existence of the global smooth solution to the Cauchy problems for a class of diagonalizable high dimensional quasilinear hyperbolic systems consisted of n-equations.
In this paper,we consider a kind of quasilinear hyperbolic systems with inhomogeneous terms satisfying dissipative condition or matching condition.For the Cauchy problem of this kind of systems,we prove that,if the in...In this paper,we consider a kind of quasilinear hyperbolic systems with inhomogeneous terms satisfying dissipative condition or matching condition.For the Cauchy problem of this kind of systems,we prove that,if the initial data is small and satisfies some decay condition,and the system is weakly linearly degenerate,then the Cauchy problem admits a unique global classical solution on t ≥ 0.展开更多
In this paper, we discuss the blow-up of periodic solutions to a class of quasilinear hyperbolic systems in diagonal form, and make the accurate estimate of life-span. These results in this paper extend the conclusion...In this paper, we discuss the blow-up of periodic solutions to a class of quasilinear hyperbolic systems in diagonal form, and make the accurate estimate of life-span. These results in this paper extend the conclusion [1-3].展开更多
In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotationa...In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotational degeneracy of hyperbolic systems of conservation laws(Ⅱ).sufficient conditions which guarantee the existence of gloats smooth solutions of the Cauchy problems (Ⅰ) and (Ⅱ) are obtained by employing the characteristic method.展开更多
Sufficient conditions are obtained for the oscillation of solutions of the systems of quasilinear hyperbolic differential equation with deviating arguments under nonlinear boundary condition.
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third ord...We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.展开更多
We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens...We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens only on two disjoint unit circles and the initial data are two different constant states, global solutions are constructed and some new phenomena are discovered. In the analysis, we first construct the solution for 0 ≤ t 〈 T*.Then, when T* ≤ t 〈 T', we get a new shock wave between two rarefactions, and then, when t 〉 T', another shock wave between two shock waves occurs. Finally, we give the large time behavior of the solution when t → ∞. The technique does not involve dimensional reduction or coordinate transformation.展开更多
In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smo...In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.展开更多
In this paper,we propose a second-order quasilinear hyperbolic system.By means of the theory on semi-global C^(1)solution to first-order quasilinear hyperbolic systems,we establish the existence and uniqueness of semi...In this paper,we propose a second-order quasilinear hyperbolic system.By means of the theory on semi-global C^(1)solution to first-order quasilinear hyperbolic systems,we establish the existence and uniqueness of semi-global C^(2)solution to this second-order quasilinear hyperbolic system.After then,the general constructive framework is utilized to obtain the local exact boundary controllability for this second-order system.展开更多
文摘We consider first order quasilinear hyperbolic systems with vertical characteristics. It was shown in [4] that such systems can be exactly controllable with the help of internal controls applied to the equations corresponding to zero eigenvalues. However, it is possible that, for physical or engineering reasons, we can not put any control on the equations corresponding to zero eigenvalues. In this paper, we will establish the exact controllability only by means of physically meaningfnl internal controls applied to the equations corresponding to non-zero eigenvalues. We also show the exact controllability for a very simplified model by means of switching controls.
文摘In this paper, we prove the existence of the global smooth solution to the Cauchy problems for a class of diagonalizable high dimensional quasilinear hyperbolic systems consisted of n-equations.
基金Supported by National Science Foundation of China(10671124)
文摘In this paper,we consider a kind of quasilinear hyperbolic systems with inhomogeneous terms satisfying dissipative condition or matching condition.For the Cauchy problem of this kind of systems,we prove that,if the initial data is small and satisfies some decay condition,and the system is weakly linearly degenerate,then the Cauchy problem admits a unique global classical solution on t ≥ 0.
文摘In this paper, we discuss the blow-up of periodic solutions to a class of quasilinear hyperbolic systems in diagonal form, and make the accurate estimate of life-span. These results in this paper extend the conclusion [1-3].
文摘In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotational degeneracy of hyperbolic systems of conservation laws(Ⅱ).sufficient conditions which guarantee the existence of gloats smooth solutions of the Cauchy problems (Ⅰ) and (Ⅱ) are obtained by employing the characteristic method.
基金This work is supported in part by NNSF of China(10571126)and in part by Program for New Century Excellent Talents in University.
文摘Sufficient conditions are obtained for the oscillation of solutions of the systems of quasilinear hyperbolic differential equation with deviating arguments under nonlinear boundary condition.
基金partially supported by the National Nature Science Foundation of China(12271114)the Guangxi Natural Science Foundation(2023JJD110009,2019JJG110003,2019AC20214)+2 种基金the Innovation Project of Guangxi Graduate Education(JGY2023061)the Key Laboratory of Mathematical Model and Application(Guangxi Normal University)the Education Department of Guangxi Zhuang Autonomous Region。
文摘We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.
基金supported by the NationalNatural Science Foundation of China(11371042,1471028,11601021)the Beijing Natural Science Foundation(1142001)
文摘We study the singular structure of a family of two dimensional non-self-similar global solutions and their interactions for quasilinear hyperbolic conservation laws. For the case when the initial discontinuity happens only on two disjoint unit circles and the initial data are two different constant states, global solutions are constructed and some new phenomena are discovered. In the analysis, we first construct the solution for 0 ≤ t 〈 T*.Then, when T* ≤ t 〈 T', we get a new shock wave between two rarefactions, and then, when t 〉 T', another shock wave between two shock waves occurs. Finally, we give the large time behavior of the solution when t → ∞. The technique does not involve dimensional reduction or coordinate transformation.
文摘In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.
基金Supported by the Science and Technology Commission of Shanghai Municipality (Grant No.23ZR1402100)the Fundamental Research Funds for the Central Universities (Grant Nos. 2232022G-13 and 2232023G-13)
文摘In this paper,we propose a second-order quasilinear hyperbolic system.By means of the theory on semi-global C^(1)solution to first-order quasilinear hyperbolic systems,we establish the existence and uniqueness of semi-global C^(2)solution to this second-order quasilinear hyperbolic system.After then,the general constructive framework is utilized to obtain the local exact boundary controllability for this second-order system.