期刊文献+

EXISTENCE OF GLOBAL SMOOTH SOLUTIONS FOR TWO IMPORTANT NONSTRICTLY QUASILINEAR HYPERBOLIC SYSTEMS

EXISTENCE OF GLOBAL SMOOTH SOLUTIONS FOR TWO IMPORTANT NONSTRICTLY QUASILINEAR HYPERBOLIC SYSTEMS
在线阅读 下载PDF
导出
摘要 In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotational degeneracy of hyperbolic systems of conservation laws(Ⅱ).sufficient conditions which guarantee the existence of gloats smooth solutions of the Cauchy problems (Ⅰ) and (Ⅱ) are obtained by employing the characteristic method. In this paper,we study the global smooth solutions of the Cauchy problem for two important nonstrictly quasilinear hyperbolic systems.i.e.,the isentropic gas dynamics system in Euler coordinates (Ⅰ) and the rotational degeneracy of hyperbolic systems of conservation laws(Ⅱ).sufficient conditions which guarantee the existence of gloats smooth solutions of the Cauchy problems (Ⅰ) and (Ⅱ) are obtained by employing the characteristic method.
出处 《Acta Mathematica Scientia》 SCIE CSCD 1995年第1期48-57,共10页 数学物理学报(B辑英文版)
关键词 Nonstrictly quasilinear hyperbolic system a priori estimates global smooth solution Nonstrictly quasilinear hyperbolic system,a priori estimates,global smooth solution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部