Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of ci...Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment pro...The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption.In order to avoid the collision between UAVs in the formation process,the concept of safety ball is introduced,and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs.Based on the idea of game theory,a method of UAV motion form setting based on the maximization of interests is proposed,including the maximization of self-interest and the maximization of formation interest is proposed,so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance.Finally,through simulation verification,the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length,and the UAV motion selection method based on the maximization interests can effectively complete the task formation.展开更多
为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Tran...为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。展开更多
多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系...多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。展开更多
为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量...为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量和降雨量将历史数据集划分为晴天、多云天和阴雨天3种场景,生成具有相似天气类型的测试集和训练样本集:然后,应用TCN进行集成特征维度提取,利用BiLSTM神经网络建模进行输出功率和天气数据时间序列的双向拟合.针对传统区间预测分位数损失函数不可微的缺陷,引入Huber范数近似替代原损失函数,并应用梯度下降进行优化,构建改进的可微分位数回归(quantile regression,简称QR)模型,生成置信区间.最后,采用核密度估计(kerneldensity estimation,简称KDE)给出概率密度预测结果。以我国华东某地区分布式光伏电站作为研究对象,与现有概率预测方法相比,该文所提出的短期预测算法的功率区间各评价指标都有所改进,验证了所提方法的可靠性。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 62073256)the Shaanxi Provincial Science and Technology Department (Grant No. 2023-YBGY-342)。
文摘Aiming at the requirement of damage testing and evaluation of equivalent target plate based on the explosion of intelligent ammunition, this paper proposes a novel method for damage testing and evaluation method of circumferential equivalent target plate. Leveraging the dispersion characteristics parameters of fragment, we establish a calculation model of the fragment power situation and the damage calculation model under the condition of fragment ultimate penetration equivalent target plate. The damage model of equivalent target plate involves the fragment dispersion density, the local perforation damage criterion, the tearing damage model, and the damage probability. We use the camera to obtain the image of the equivalent target plate with fragment perforation, and research the algorithm of fragment distribution position recognition and fragment perforation area calculation method on the equivalent target plate by image processing technology. Based on the obtained parameters of the breakdown position and perforation area of fragments on equivalent target plate, we apply to damage calculation model of equivalent target plate, and calculate the damage probability of each equivalent target plate, and use the combined probabilistic damage calculation method to obtain the damage evaluation results of the circumferential equivalent target plate in an intelligent ammunition explosion experiment. Through an experimental testing, we verify the feasibility and rationality of the proposed damage evaluation method by comparison, the calculation results can reflect the actual damage effect of the equivalent target plate.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
基金supported by the Basic Scientific Research Business Expenses of Central Universities(3072022QBZ0806)。
文摘The formation control of multiple unmanned aerial vehicles(multi-UAVs)has always been a research hotspot.Based on the straight line trajectory,a multi-UAVs target point assignment algorithm based on the assignment probability is proposed to achieve the shortest overall formation path of multi-UAVs with low complexity and reduce the energy consumption.In order to avoid the collision between UAVs in the formation process,the concept of safety ball is introduced,and the collision detection based on continuous motion of two time slots and the lane occupation detection after motion is proposed to avoid collision between UAVs.Based on the idea of game theory,a method of UAV motion form setting based on the maximization of interests is proposed,including the maximization of self-interest and the maximization of formation interest is proposed,so that multi-UAVs can complete the formation task quickly and reasonably with the linear trajectory assigned in advance.Finally,through simulation verification,the multi-UAVs target assignment algorithm based on the assignment probability proposed in this paper can effectively reduce the total path length,and the UAV motion selection method based on the maximization interests can effectively complete the task formation.
文摘为解决风电机组故障诊断中故障样本不足而导致模型准确率不高的问题,将当下备受关注的数据增强方法-去噪扩散概率模型(denoising diffusion probability model,DDPM)引入到故障诊断领域以生成大量高质量的故障样本数据集。因此,结合Transformer网络,提出了一种DDPM-Transformer风电机组故障样本生成方法。首先,将用于计算机视觉图像生成领域的DDPM模型应用于风电机组故障诊断领域中,通过前向加噪过程将数据逐渐转化为噪声,再通过逆向去噪过程将噪声逐步恢复为原始数据,实现从噪声中生成故障数据,解决数据不平衡问题;其次,通过对原始DDPM中使用的U-net模块进行改进,使用Transformer模型替换U-net网络,利用扩散后的数据和添加的噪声训练Transformer模型,实现噪声预测,以提高故障数据的生成质量;最后,使用多种生成模型评价指标对生成的故障数据进行评价,在监督控制和数据采集系统(supervisory control and data acquisition,SCADA)故障数据生成中论证改进DDPM-Transformer模型的性能。通过试验证明,所提DDPM-Transformer模型与现有的生成模型相比,最大均值异(maximum mean discrepancy,MMD)最大提升0.13,峰值信噪比(peak signal to noise ratio,PSNR)最大提升7.8。所提模型可以有效地生成质量更高的风电机组故障样本,从而基于该样本集辅助训练基于深度学习的故障诊断模型,可以使诊断模型具有更高精度和良好的稳定性。
文摘多智能体信息融合(multi-agent information fusion,MAIF)系统主要面向多个智能体之间的信息融合、调节、交流和矛盾处理。研究针对数据高度冲突条件下的D-S证据理论失效问题,提出一种将重构的基本概率分配和信念熵相结合的多智能体系统冲突数据融合方法。该方法使用重构的基本概率分配和信念熵修正证据的可靠性,获得更合理的证据,使用Dempster组合规则将证据进行融合得到结果,在2个实验中均得到了超过90%的置信度。实验表明了该方法的有效性,提高了MAIF系统辨识过程的精度。
文摘为更好地描述光伏出力不确定性,该文提出了一种基于时序卷积网络(temporal convolutional network,简称TCN)和双向长短期记忆(bidirectional long short term memory,简称BiLSTM)的光伏功率概率预测模型.首先,基于数值天气预报中的云量和降雨量将历史数据集划分为晴天、多云天和阴雨天3种场景,生成具有相似天气类型的测试集和训练样本集:然后,应用TCN进行集成特征维度提取,利用BiLSTM神经网络建模进行输出功率和天气数据时间序列的双向拟合.针对传统区间预测分位数损失函数不可微的缺陷,引入Huber范数近似替代原损失函数,并应用梯度下降进行优化,构建改进的可微分位数回归(quantile regression,简称QR)模型,生成置信区间.最后,采用核密度估计(kerneldensity estimation,简称KDE)给出概率密度预测结果。以我国华东某地区分布式光伏电站作为研究对象,与现有概率预测方法相比,该文所提出的短期预测算法的功率区间各评价指标都有所改进,验证了所提方法的可靠性。