To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail ...To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations.展开更多
It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used suc...It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.展开更多
Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the sig...Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.展开更多
The problem of potential field inversion can be become that of solving system of linear equations by using of linear processing. There are a lot of algorithms for solving any system of linear equations, and the regula...The problem of potential field inversion can be become that of solving system of linear equations by using of linear processing. There are a lot of algorithms for solving any system of linear equations, and the regularized method is one of the best algorithms. But there is a shortcoming in application with the regularized method, viz. the optimum regularized parameter must be determined by experience, so it is difficulty to obtain an optimum solution. In this paper, an iterative algorithm for solving any system of linear equations is discussed, and a sufficient and necessary condition of the algorithm convergence is presented and proved. The algorithm is convergent for any starting point, and the optimum solution can be obtained, in particular, there is no need to calculate the inverse matrix in the algorithm. The typical practical example shows the iterative algorithm is simple and practicable, and the inversion effect is better than that of regularized method.展开更多
An approach is proposed to design decentralized state feedback H ∞ suboptimal controllers for LTI interconnected large scale systems. The parametrization theorem of decentralized robust state feedback controllers is ...An approach is proposed to design decentralized state feedback H ∞ suboptimal controllers for LTI interconnected large scale systems. The parametrization theorem of decentralized robust state feedback controllers is developed in two steps and the design condition for the feedback gain is in the form of matrix inequalities. An iterative solution algorithm based on linear matrix inequality(LMI) techniques is proposed to obtain the decentralized feedback gain. The given examples are taken to show the application and the convergence of the algorithm.展开更多
An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together fo...An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.展开更多
It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of t...It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.展开更多
玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建...玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。展开更多
为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorith...为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorithm,FPEA).该算法的繁殖算子是由Aitken加速的不动点迭代模型导出的二次多项式,其整体框架继承传统演化算法(如差分演化算法)基于种群的迭代模式.试验结果表明:在基准函数集CEC2014、CEC2019上,本文算法的最优值平均排名在所有比较算法中排名第1;在4个工程约束设计问题上,FPEA与CSA、GPE等多个算法相比,能以较少的计算开销获得最高的求解精度.展开更多
研究了复杂微细导线电容矩阵提取边界元法(boundary element method,BEM)的边界离散问题以及增强计算精度和数值稳定性的有效措施,分析了开阔边界尺寸、开阔边界离散、导线离散对计算精度的影响以及伪解、矩阵奇异性问题,提出了基于导...研究了复杂微细导线电容矩阵提取边界元法(boundary element method,BEM)的边界离散问题以及增强计算精度和数值稳定性的有效措施,分析了开阔边界尺寸、开阔边界离散、导线离散对计算精度的影响以及伪解、矩阵奇异性问题,提出了基于导线离散迭代和开阔边界迭代两阶段自动迭代边界元算法(automatic iterative boundary element method,AIBEM),并结合实例阐述了全域法和区域分解法两种多层介质问题系数矩阵生成方法。研究结果表明,边界环内生成的系数矩阵存在误差均衡协调问题,对复杂模型需合理选择各线段离散单元数及开阔边界尺寸,通过AIBEM可以获得经济的离散参数,有效避免矩阵奇异性,并提高收敛稳定性。将计算结果与有限元法、解析法、传输线法、矩量法进行了对比分析,证实了算法的可靠性。展开更多
为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种...为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。展开更多
基金Project(2023ZDZX0008)supported by the Sichuan Major Science and Technology Project,ChinaProject(52308468)supported by the National Natural Science Foundation of ChinaProject(2022JBQY009)supported by the Fundamental Research Funds for the Central Universities(Science and Technology Leading Talent Team Project),China。
文摘To investigate the effect of rail pad viscoelasticity on vehicle-track-bridge coupled vibration,the fractional Voigt and Maxwell model in parallel(FVMP)was used to characterize the viscoelastic properties of the rail pad based on dynamic performance test results.The FVMP model was then incorporated into the vehicle-track-bridge nonlinear coupled model,and its dynamic response was solved using a cross-iteration algorithm with a relaxation factor.Results indicate that the nonlinear coupled model achieves good convergence when the time step is less than 0.001 s,with the cross-iteration algorithm adjusting the wheel-rail force.In particular,the best convergence is achieved when the relaxation factor is within the range of 0.3-0.5.The FVMP model effectively characterizes the viscoelasticity of rail pads across a temperature range of±20℃and a frequency range of 1-1000 Hz.The viscoelasticity of rail pads significantly affects high-frequency vibrations in the coupled system,particularly around 50 Hz,corresponding to the wheel-rail coupled resonance range.Considering rail pad viscoelasticity is essential for accurately predicting track structure vibrations.
文摘It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.
基金Project(61071104) supported by the National Natural Science Foundation of China
文摘Based on the analysis of the feature of cognitive radio networks, a relevant interference model was built. Cognitive users should consider especially the problem of interference with licensed users and satisfy the signal-to-interference noise ratio (SINR) requirement at the same time. According to different power thresholds, an approach was given to solve the problem of coexistence between licensed user and cognitive user in cognitive system. Then, an uplink distributed power control algorithm based on traditional iterative model was proposed. Convergence analysis of the algorithm in case of feasible systems was provided. Simulations show that this method can provide substantial power savings as compared with the power balancing algorithm while reducing the achieved SINR only slightly, since 6% S1NR loss can bring 23% power gain. Through further simulations, it can be concluded that the proposed solution has better effect as the noise power or system load increases.
基金the work is supported by scientific and technological fund of CNPC
文摘The problem of potential field inversion can be become that of solving system of linear equations by using of linear processing. There are a lot of algorithms for solving any system of linear equations, and the regularized method is one of the best algorithms. But there is a shortcoming in application with the regularized method, viz. the optimum regularized parameter must be determined by experience, so it is difficulty to obtain an optimum solution. In this paper, an iterative algorithm for solving any system of linear equations is discussed, and a sufficient and necessary condition of the algorithm convergence is presented and proved. The algorithm is convergent for any starting point, and the optimum solution can be obtained, in particular, there is no need to calculate the inverse matrix in the algorithm. The typical practical example shows the iterative algorithm is simple and practicable, and the inversion effect is better than that of regularized method.
文摘An approach is proposed to design decentralized state feedback H ∞ suboptimal controllers for LTI interconnected large scale systems. The parametrization theorem of decentralized robust state feedback controllers is developed in two steps and the design condition for the feedback gain is in the form of matrix inequalities. An iterative solution algorithm based on linear matrix inequality(LMI) techniques is proposed to obtain the decentralized feedback gain. The given examples are taken to show the application and the convergence of the algorithm.
基金Project(2013CB035504) supported by the National Basic Research Program of ChinaProject(2012zzts078) supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2009ZX02038) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘An intuitive method for circle fitting is proposed. Assuming an approximate circle(CA,n) for the fitting of some scattered points, it can be imagined that every point would apply a force to CA,n, which all together form an overall effect that "draws" CA,n towards best fitting to the group of points. The basic element of the force is called circular attracting factor(CAF) which is defined as a real scalar in a radial direction of CA,n. An iterative algorithm based on this idea is proposed, and the convergence and accuracy are analyzed. The algorithm converges uniformly which is proved by the analysis of Lyapunov function, and the accuracy of the algorithm is in accord with that of geometric least squares of circle fitting. The algorithm is adopted to circle detection in grayscale images, in which the transferring to binary images is not required, and thus the algorithm is less sensitive to lightening and background noise. The main point for the adaption is the calculation of CAF which is extended in radial directions of CA,n for the whole image. All pixels would apply forces to CA,n, and the overall effect of forces would be equivalent to a force from the centroid of pixels to CA,n. The forces from would-be edge pixels would overweigh that from noisy pixels, so the following approximate circle would be of better fitting. To reduce the amount of calculation, pixels are only used in an annular area including the boundary of CA,n just in between for the calculation of CAF. Examples are given, showing the process of circle fitting of scattered points around a circle from an initial assuming circle, comparing the fitting results for scattered points from some related literature, applying the method proposed for circular edge detection in grayscale images with noise, and/or with only partial arc of a circle, and for circle detection in BGA inspection.
基金supported by the Natural Science Foundation of Hubei Province of China(2008CDZ047)
文摘It has been shown in various papers that most interior-point algorithms for linear optimization and their analysis can be generalized to P_*(κ) linear complementarity problems.This paper presents an extension of the recent variant of Mehrotra's second order algorithm for linear optimijation.It is shown that the iteration-complexity bound of the algorithm is O(4κ + 3)√14κ + 5 nlog(x0)Ts0/ε,which is similar to that of the corresponding algorithm for linear optimization.
文摘玉米育种过程中,灌浆期籽粒含水率检测时,通常需要脱粒,采集穗中间200粒为检测样本。为了保护亲本,避免破坏性检测,该研究提出一种基于近红外光谱的灌浆期玉米籽粒水分定量分析通用模型,用于灌浆期玉米籽粒水分的田间原位检测。首先构建GA-IRIV-DS光谱数据处理策略。利用遗传算法(genetic algorithm,GA)和迭代保留信息变量(iterative retention of information variables,IRIV)二次波长筛选方法,提取光谱数据中有效的水分变量信息,减小特征空间维度的同时提高模型预测精度;再结合直接校正算法(direct standardization,DS),降低预测样本与建模样本的差异性,将玉米灌浆期穗尖部籽粒光谱数据校正为中间200籽粒的光谱,使水分定量分析模型能够具备中间200籽粒和穗尖部籽粒2种检测样本的通用性。在GA-IRIV-DS光谱数据处理策略的基础上,构建基于偏最小二乘法(partial lpeast squares regression,PLSR)的水分定量分析通用模型。经过验证,GA-IRIV-DS光谱数据处理策略校正后的光谱差异性降低了59.4%。为了进一步验证GA-IRIV-DS光谱数据处理策略的有效性,分析了GA+IRIVN组合波长筛选提取光谱特征,并分别与全光谱、多种典型波长筛选方法结合DS方法构建基于偏最小二乘法(PLSR)的水分定量分析模型结果相比较。试验结果表明,两种样本预测集GA-IRIVN-DS-PLSR模型效果均优于全光谱和其他模型,中间籽粒样本和穗尖部籽粒样本的预测决定系数(R^(2))达到了0.9715和0.9012,均方根误差(RMSEP)较全光谱下降了80.10%和64.60%。证明基于GA-IRIVN-DS光谱数据处理策略建立的近红外光谱水分定量分析模型具有一定泛化能力,可以为玉米育种过程中,减少检测过程中的样本破坏和提高检测效率提供可行的参考方法。
文摘为设计高效稳定的演化算法,将方程求根的不动点迭代思想引入到优化领域,通过将演化算法的寻优过程看作为在迭代框架下方程不动点的逐步显示化过程,设计出一种基于数学模型的演化新算法,即不动点演化算法(fixed point evolution algorithm,FPEA).该算法的繁殖算子是由Aitken加速的不动点迭代模型导出的二次多项式,其整体框架继承传统演化算法(如差分演化算法)基于种群的迭代模式.试验结果表明:在基准函数集CEC2014、CEC2019上,本文算法的最优值平均排名在所有比较算法中排名第1;在4个工程约束设计问题上,FPEA与CSA、GPE等多个算法相比,能以较少的计算开销获得最高的求解精度.
文摘研究了复杂微细导线电容矩阵提取边界元法(boundary element method,BEM)的边界离散问题以及增强计算精度和数值稳定性的有效措施,分析了开阔边界尺寸、开阔边界离散、导线离散对计算精度的影响以及伪解、矩阵奇异性问题,提出了基于导线离散迭代和开阔边界迭代两阶段自动迭代边界元算法(automatic iterative boundary element method,AIBEM),并结合实例阐述了全域法和区域分解法两种多层介质问题系数矩阵生成方法。研究结果表明,边界环内生成的系数矩阵存在误差均衡协调问题,对复杂模型需合理选择各线段离散单元数及开阔边界尺寸,通过AIBEM可以获得经济的离散参数,有效避免矩阵奇异性,并提高收敛稳定性。将计算结果与有限元法、解析法、传输线法、矩量法进行了对比分析,证实了算法的可靠性。
文摘为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。