The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in...The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.展开更多
经典AOD-Net(All in One Dehazing Network)去雾后的图像存在细节清晰度不足、明暗反差过大和画面昏暗等问题。为了解决这些图像去雾问题,提出一种在AOD-Net基础上改进的多尺度算法。改进的网络结构采用深度可分离卷积替换传统卷积方式...经典AOD-Net(All in One Dehazing Network)去雾后的图像存在细节清晰度不足、明暗反差过大和画面昏暗等问题。为了解决这些图像去雾问题,提出一种在AOD-Net基础上改进的多尺度算法。改进的网络结构采用深度可分离卷积替换传统卷积方式,减少了冗余参数量,加快了计算速度并有效地减少了模型的内存占用量,从而提高了算法去雾效率;同时采用多尺度结构在不同尺度上对雾图进行分析和处理,更好地捕捉图像的细节信息,提升了网络对图像细节的处理能力,解决了原算法去雾时存在的细节模糊问题;最后在网络结构中加入金字塔池化模块,用于整合图像不同区域的上下文信息,扩展了网络的感知范围,从而提高网络模型获取有雾图像全局信息的能力,进而改善图像色调失真、细节丢失等问题。此外,引入一个低照度增强模块,通过明确预测噪声实现去噪的目标,从而恢复曝光不足的图像。在低光去雾图像中,峰值信噪比(PSNR)和结构相似性(SSIM)指标均有显著提升,处理后的图片具有更高的整体自然度。实验结果表明:与经典AOD-Net去雾的结果相比,改进算法能够更好地恢复图像的细节和结构,使得去雾后的图像更自然,饱和度和对比度也更加平衡;在RESIDE的SOTS数据集中的室外和室内场景,相较于经典AOD-Net,改进算法的PSNR分别提升了4.5593 dB和4.0656 dB,SSIM分别提升了0.0476和0.0874。展开更多
电力场景的三维语义信息识别是其后续精细化管理的基础和关键,然而,由于电力场景地物结构信息复杂、纹理多样,为其精细化理解与识别带来了一定的困难和挑战。本文提出了一种基于改进RandLA-Net的电力场景点云语义分割方法,该方法通过引...电力场景的三维语义信息识别是其后续精细化管理的基础和关键,然而,由于电力场景地物结构信息复杂、纹理多样,为其精细化理解与识别带来了一定的困难和挑战。本文提出了一种基于改进RandLA-Net的电力场景点云语义分割方法,该方法通过引入特征拓展和分离池化操作来提高模型的性能,并在电力数据集上测试了该方法的实际效果,将其与现有的语义分割方法进行了比较。结果表明,该方法在准确性和效率方面具有很强的优势,综合对比来看,比前沿的RandLA-Net(Random Sampling and Local Feature Aggregator Network)提高了2.64和2.9的总体精度及平均交并比值,验证了该方法的有效性。展开更多
为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫...为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。展开更多
文摘The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.
文摘经典AOD-Net(All in One Dehazing Network)去雾后的图像存在细节清晰度不足、明暗反差过大和画面昏暗等问题。为了解决这些图像去雾问题,提出一种在AOD-Net基础上改进的多尺度算法。改进的网络结构采用深度可分离卷积替换传统卷积方式,减少了冗余参数量,加快了计算速度并有效地减少了模型的内存占用量,从而提高了算法去雾效率;同时采用多尺度结构在不同尺度上对雾图进行分析和处理,更好地捕捉图像的细节信息,提升了网络对图像细节的处理能力,解决了原算法去雾时存在的细节模糊问题;最后在网络结构中加入金字塔池化模块,用于整合图像不同区域的上下文信息,扩展了网络的感知范围,从而提高网络模型获取有雾图像全局信息的能力,进而改善图像色调失真、细节丢失等问题。此外,引入一个低照度增强模块,通过明确预测噪声实现去噪的目标,从而恢复曝光不足的图像。在低光去雾图像中,峰值信噪比(PSNR)和结构相似性(SSIM)指标均有显著提升,处理后的图片具有更高的整体自然度。实验结果表明:与经典AOD-Net去雾的结果相比,改进算法能够更好地恢复图像的细节和结构,使得去雾后的图像更自然,饱和度和对比度也更加平衡;在RESIDE的SOTS数据集中的室外和室内场景,相较于经典AOD-Net,改进算法的PSNR分别提升了4.5593 dB和4.0656 dB,SSIM分别提升了0.0476和0.0874。
文摘电力场景的三维语义信息识别是其后续精细化管理的基础和关键,然而,由于电力场景地物结构信息复杂、纹理多样,为其精细化理解与识别带来了一定的困难和挑战。本文提出了一种基于改进RandLA-Net的电力场景点云语义分割方法,该方法通过引入特征拓展和分离池化操作来提高模型的性能,并在电力数据集上测试了该方法的实际效果,将其与现有的语义分割方法进行了比较。结果表明,该方法在准确性和效率方面具有很强的优势,综合对比来看,比前沿的RandLA-Net(Random Sampling and Local Feature Aggregator Network)提高了2.64和2.9的总体精度及平均交并比值,验证了该方法的有效性。
文摘为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。