Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the mai...Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.展开更多
In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the...In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV.展开更多
大规模的电动汽车(plug-in electric vehicle,PEV)和风力、太阳能等可再生能源(renewable energy sources,RES)发电并网使未来智能配电网规划需考虑更多不确定因素。在考虑PEV充电随机性和RES出力间歇性的基础上,利用机会约束规划法建...大规模的电动汽车(plug-in electric vehicle,PEV)和风力、太阳能等可再生能源(renewable energy sources,RES)发电并网使未来智能配电网规划需考虑更多不确定因素。在考虑PEV充电随机性和RES出力间歇性的基础上,利用机会约束规划法建立了计及环境成本、DG总费用和有功损耗的多目标分布式电源优化配置模型,并提出一种考虑随机变量相关性的拉丁超立方采样蒙特卡洛模拟嵌入纵横交叉算法(crisscross optimization algorithm-correlation Latin hypercube sampling Monte Carlo simulation,CSO-CLMCS)的方法对优化模型进行求解。该方法首先根据PEV和RES的概率模型及随机变量间的相关性,利用CLMCS概率潮流计算方法计算配电网概率潮流,并根据概率潮流结果检验约束条件及计算目标函数值,最后由CSO算法进行全局寻优得到最优配置方案。采用实际算例进行仿真,结果验证了所提模型和方法的可行性和有效性。展开更多
电动汽车(plug-in electric vehicle,PEV)的大规模接入使得传统配电网的规划方法和模式发生了变化。为此,提出了一种计及PEV负荷的智能配电系统多阶段规划模型及其求解方法。首先,在考虑PEV负荷接入和系统规划可靠性指标要求的条件下,...电动汽车(plug-in electric vehicle,PEV)的大规模接入使得传统配电网的规划方法和模式发生了变化。为此,提出了一种计及PEV负荷的智能配电系统多阶段规划模型及其求解方法。首先,在考虑PEV负荷接入和系统规划可靠性指标要求的条件下,以配电网建设和运行成本最小化为目标,构建了包含变电站、分布式电源(distributed generation, DG)和线路在内的智能配电系统多阶段规划模型;其次,在考虑系统充裕度要求和经济性要求的条件下,提出了一种新的多阶段规划模型求解方法,通过模型简化和倒序运算,实现了智能配电系统多阶段规划模型的快速求解;最后,通过算例验证了所提模型及求解方法的可行性,并且分析了PEV渗透率和充电模式对智能配电网规划结果的影响。展开更多
文摘Due to soaring fuel prices and environmental concerns, hybrid electric vehicle(HEV) technology attracts more attentions in last decade. Energy management system, configuration of HEV and traffic conditions are the main factors which affect HEV's fuel consumption, emission and performance. Therefore, optimal management of the energy components is a key element for the success of a HEV. An optimal energy management system is developed for HEV based on genetic algorithm. Then, different powertrain system component combinations effects are investigated in various driving cycles. HEV simulation results are compared for default rule-based, fuzzy and GA-fuzzy controllers by using ADVISOR. The results indicate the effectiveness of proposed optimal controller over real world driving cycles. Also, an optimal powertrain configuration to improve fuel consumption and emission efficiency is proposed for each driving condition. Finally, the effects of batteries in initial state of charge and hybridization factor are investigated on HEV performance to evaluate fuel consumption and emissions. Fuel consumption average reduction of about 14% is obtained for optimal configuration data in contrast to default configuration. Also results indicate that proposed controller has reduced emission of about 10% in various traffic conditions.
基金Project(2007CB209707) supported by the National Basic Research Program of China
文摘In order to achieve the improvement of the driving comfort and energy efficiency,an new e-CVT flexible full hybrid electric system(E2FHS) is proposed,which uses an integrated main drive motor and generator to take the place of the original automatic or manual transmission to realize the functions of continuously variable transmission(e-CVT).The design and prototype realization of the E2FHS system for a plug-in hybrid vehicle(PHEV) is performed.In order to analyze and optimize the parameters and the power flux between different parts of the E2FHS,simulation software is developed.Especially,in order to optimize the performance of the energy economy improvement of the E2FHS,the effect of the different energy management controllers is investigated,and an adaptive online-optimal energy management controller for the E2FHS is built and validated by the prototype PHEV.
文摘大规模的电动汽车(plug-in electric vehicle,PEV)和风力、太阳能等可再生能源(renewable energy sources,RES)发电并网使未来智能配电网规划需考虑更多不确定因素。在考虑PEV充电随机性和RES出力间歇性的基础上,利用机会约束规划法建立了计及环境成本、DG总费用和有功损耗的多目标分布式电源优化配置模型,并提出一种考虑随机变量相关性的拉丁超立方采样蒙特卡洛模拟嵌入纵横交叉算法(crisscross optimization algorithm-correlation Latin hypercube sampling Monte Carlo simulation,CSO-CLMCS)的方法对优化模型进行求解。该方法首先根据PEV和RES的概率模型及随机变量间的相关性,利用CLMCS概率潮流计算方法计算配电网概率潮流,并根据概率潮流结果检验约束条件及计算目标函数值,最后由CSO算法进行全局寻优得到最优配置方案。采用实际算例进行仿真,结果验证了所提模型和方法的可行性和有效性。
文摘电动汽车(plug-in electric vehicle,PEV)的大规模接入使得传统配电网的规划方法和模式发生了变化。为此,提出了一种计及PEV负荷的智能配电系统多阶段规划模型及其求解方法。首先,在考虑PEV负荷接入和系统规划可靠性指标要求的条件下,以配电网建设和运行成本最小化为目标,构建了包含变电站、分布式电源(distributed generation, DG)和线路在内的智能配电系统多阶段规划模型;其次,在考虑系统充裕度要求和经济性要求的条件下,提出了一种新的多阶段规划模型求解方法,通过模型简化和倒序运算,实现了智能配电系统多阶段规划模型的快速求解;最后,通过算例验证了所提模型及求解方法的可行性,并且分析了PEV渗透率和充电模式对智能配电网规划结果的影响。