苯并[α]芘[benzo[α]pyrene,BaP]是环境中广泛存在的一种致癌多环芳烃,带来的健康风险受到普遍关注.基于生理的药代动力学(physiologically based pharmacokinetic, PBPK)模型是一种预测污染物在生物体内部剂量的数学模型,近年来在健...苯并[α]芘[benzo[α]pyrene,BaP]是环境中广泛存在的一种致癌多环芳烃,带来的健康风险受到普遍关注.基于生理的药代动力学(physiologically based pharmacokinetic, PBPK)模型是一种预测污染物在生物体内部剂量的数学模型,近年来在健康风险评估中应用广泛.本文介绍了BaP对生物体的健康危害,概述了BaP的PBPK模型研究进展,指出了BaP人体PBPK模型存在BaP及代谢物的代谢机理尚未完全明确、代谢参数可靠性不高、模型还需继续完善等问题,并探讨了PBPK模型在BaP健康风险评估中的应用.一方面,PBPK模型在阐明内暴露监测结果及补充完善污染物在人体内的代谢机理方面具有明显优势,基于PBPK模型分析完善了BaP生物标志物3-羟基苯并[α]芘在肾小管重吸收的肾脏排泄机制;另一方面,PBPK模型作为外推工具,通过种间外推可以量化污染物的种间药代动力学差异,减小动物健康剂量水平外推至人体基准值的不确定性;通过体外到体内的外推可以关联内外暴露剂量,利用反剂量学推导人体健康基准值.这两种外推方法的应用均可以提高人体健康基准值推导的科学性、准确性.并以BaP为例剖析了PBPK模型不确定性来源,提出了提高模型精确性的方法.最后,为了进一步推动完善BaP的人体健康风险评估方法体系,本文探讨总结了3个重点研究方向:一是探索PBPK模型应用于BaP健康风险评估的方法体系;二是探索可靠性更高的Ba P健康风险评估概率模型;三是开展BaP的生物标志物用于人体健康风险评估可行性研究.展开更多
生理药动学(physiologically based pharmacokinetic,PBPK)模型是一种模拟药物在人或动物体内吸收、分布、代谢和排泄过程的数学模型,集成了药物的理化和系统(生理)信息,能描述药物在靶组织器官中的经时变化,用于药物研究的各个阶段。...生理药动学(physiologically based pharmacokinetic,PBPK)模型是一种模拟药物在人或动物体内吸收、分布、代谢和排泄过程的数学模型,集成了药物的理化和系统(生理)信息,能描述药物在靶组织器官中的经时变化,用于药物研究的各个阶段。本文将综述PBPK模型在抗感染药物研发及临床评价中的应用,为抗感染药物研发及临床合理应用提供参考。展开更多
目的·以氯氮平-氟伏沙明合用为例,通过构建针对中国群体的生理药物代谢动力学(physiologically based pharmacokinetic,PBPK)模型,预测氯氮平联合用药的药物相互作用(drug-drug interaction,DDI)并对氯氮平进行剂量优化。方法·...目的·以氯氮平-氟伏沙明合用为例,通过构建针对中国群体的生理药物代谢动力学(physiologically based pharmacokinetic,PBPK)模型,预测氯氮平联合用药的药物相互作用(drug-drug interaction,DDI)并对氯氮平进行剂量优化。方法·通过文献及药理学相关数据库获取氯氮平及氟伏沙明的基本理化性质参数,药物吸收、分布、代谢及排泄(absorption,distribution,metabolism and excretion,ADME)相关参数及中国群体的生理解剖相关参数,利用PK-Sim®软件构建2种药物的PBPK模型。以平均百分比误差(mean percentage error,MPE)和平均绝对百分比误差(mean absolute percentage error,MAPE),或者预测药时曲线下面积(area under the curve,AUC)或峰浓度(peak concentration,Cmax)与实测AUC或Cmax的比值为判断指标,并通过真实世界血药浓度数据进行模型验证。在此基础上结合氟伏沙明对氯氮平的抑制作用参数构建氯氮平-氟伏沙明联合用药的PBPK模型,预测氯氮平的药物代谢动力学变化。以药时曲线下面积比值(area under the curve ratio,AUCR)或峰浓度比值(peak concentration ratio,CmaxR)的90%置信区间为评价指标判断是否存在临床显著的DDI(无效应边界为80%~125%)。根据PBPK模型量化氯氮平-氟伏沙明联合用药后氯氮平的药物代谢动力学变化,并制定氯氮平的剂量优化方案。结果·构建的氯氮平、氟伏沙明模型验证的MPE绝对值≤10%且MAPE<25%,说明预测的药时曲线是准确的。氯氮平-氟伏沙明合用的PBPK模型的AUC预测值与实测值的比值在1.25以内,可准确地预测药物代谢动力学参数。氯氮平-氟伏沙明联用模型的预测结果提示,氯氮平-氟伏沙明联合用药的AUCR和CmaxR的90%置信区间均不完全位于无效应边界内,说明两药合用会发生临床显著性的DDI。此外,PBPK模型的剂量优化结果提示:受试者联合服用氯氮平及氟伏沙明时,氯氮平的剂量减少至原本剂量的50%,可使氯氮平的暴露水平与单药治疗时保持一致。结论·研究建立的PBPK模型可以较好模拟联合用药对氯氮平药物代谢动力学的影响,对于预测药物可能的相互作用及剂量优化方案有参考意义。如果治疗过程中需要合用氯氮平和氟伏沙明,须警惕临床显著的DDI,并应优化氯氮平的剂量。展开更多
生理药代动力学(physiologically based pharmacokinetics,PBPK)是定量药理学的主要研究领域之一,其在新药研发和临床医疗实践的各个阶段均发挥着重要作用,包括药物早期开发阶段的人体药动学(pharmacokinetics,PK)预测、临床研究阶段考...生理药代动力学(physiologically based pharmacokinetics,PBPK)是定量药理学的主要研究领域之一,其在新药研发和临床医疗实践的各个阶段均发挥着重要作用,包括药物早期开发阶段的人体药动学(pharmacokinetics,PK)预测、临床研究阶段考察各种生理和病理等因素对PK的影响、特殊人群剂量调整、药物相互作用等。近年来,PBPK模型在工业界的应用越来越广泛,监管机构也认可PBPK模型在药物研发中的积极指导作用。随着模型指导的药物研发的发展和普及,将PBPK模型与其他常用建模方法,包括群体药代动力学(population pharmacokinetics,PopPK)、药代动力学/药效动力学(pharmacokinetic/pharmacodynamic,PK/PD)模型和基于模型的Meta分析(model-based meta-analysis,MBMA)相融合可实现优势互补。本文简介了PBPK的起源、发展和应用现状,并对其与PopPK、PK/PD和MBMA的融合应用进展进行综述。展开更多
文摘苯并[α]芘[benzo[α]pyrene,BaP]是环境中广泛存在的一种致癌多环芳烃,带来的健康风险受到普遍关注.基于生理的药代动力学(physiologically based pharmacokinetic, PBPK)模型是一种预测污染物在生物体内部剂量的数学模型,近年来在健康风险评估中应用广泛.本文介绍了BaP对生物体的健康危害,概述了BaP的PBPK模型研究进展,指出了BaP人体PBPK模型存在BaP及代谢物的代谢机理尚未完全明确、代谢参数可靠性不高、模型还需继续完善等问题,并探讨了PBPK模型在BaP健康风险评估中的应用.一方面,PBPK模型在阐明内暴露监测结果及补充完善污染物在人体内的代谢机理方面具有明显优势,基于PBPK模型分析完善了BaP生物标志物3-羟基苯并[α]芘在肾小管重吸收的肾脏排泄机制;另一方面,PBPK模型作为外推工具,通过种间外推可以量化污染物的种间药代动力学差异,减小动物健康剂量水平外推至人体基准值的不确定性;通过体外到体内的外推可以关联内外暴露剂量,利用反剂量学推导人体健康基准值.这两种外推方法的应用均可以提高人体健康基准值推导的科学性、准确性.并以BaP为例剖析了PBPK模型不确定性来源,提出了提高模型精确性的方法.最后,为了进一步推动完善BaP的人体健康风险评估方法体系,本文探讨总结了3个重点研究方向:一是探索PBPK模型应用于BaP健康风险评估的方法体系;二是探索可靠性更高的Ba P健康风险评估概率模型;三是开展BaP的生物标志物用于人体健康风险评估可行性研究.
文摘生理药动学(physiologically based pharmacokinetic,PBPK)模型是一种模拟药物在人或动物体内吸收、分布、代谢和排泄过程的数学模型,集成了药物的理化和系统(生理)信息,能描述药物在靶组织器官中的经时变化,用于药物研究的各个阶段。本文将综述PBPK模型在抗感染药物研发及临床评价中的应用,为抗感染药物研发及临床合理应用提供参考。
文摘目的·以氯氮平-氟伏沙明合用为例,通过构建针对中国群体的生理药物代谢动力学(physiologically based pharmacokinetic,PBPK)模型,预测氯氮平联合用药的药物相互作用(drug-drug interaction,DDI)并对氯氮平进行剂量优化。方法·通过文献及药理学相关数据库获取氯氮平及氟伏沙明的基本理化性质参数,药物吸收、分布、代谢及排泄(absorption,distribution,metabolism and excretion,ADME)相关参数及中国群体的生理解剖相关参数,利用PK-Sim®软件构建2种药物的PBPK模型。以平均百分比误差(mean percentage error,MPE)和平均绝对百分比误差(mean absolute percentage error,MAPE),或者预测药时曲线下面积(area under the curve,AUC)或峰浓度(peak concentration,Cmax)与实测AUC或Cmax的比值为判断指标,并通过真实世界血药浓度数据进行模型验证。在此基础上结合氟伏沙明对氯氮平的抑制作用参数构建氯氮平-氟伏沙明联合用药的PBPK模型,预测氯氮平的药物代谢动力学变化。以药时曲线下面积比值(area under the curve ratio,AUCR)或峰浓度比值(peak concentration ratio,CmaxR)的90%置信区间为评价指标判断是否存在临床显著的DDI(无效应边界为80%~125%)。根据PBPK模型量化氯氮平-氟伏沙明联合用药后氯氮平的药物代谢动力学变化,并制定氯氮平的剂量优化方案。结果·构建的氯氮平、氟伏沙明模型验证的MPE绝对值≤10%且MAPE<25%,说明预测的药时曲线是准确的。氯氮平-氟伏沙明合用的PBPK模型的AUC预测值与实测值的比值在1.25以内,可准确地预测药物代谢动力学参数。氯氮平-氟伏沙明联用模型的预测结果提示,氯氮平-氟伏沙明联合用药的AUCR和CmaxR的90%置信区间均不完全位于无效应边界内,说明两药合用会发生临床显著性的DDI。此外,PBPK模型的剂量优化结果提示:受试者联合服用氯氮平及氟伏沙明时,氯氮平的剂量减少至原本剂量的50%,可使氯氮平的暴露水平与单药治疗时保持一致。结论·研究建立的PBPK模型可以较好模拟联合用药对氯氮平药物代谢动力学的影响,对于预测药物可能的相互作用及剂量优化方案有参考意义。如果治疗过程中需要合用氯氮平和氟伏沙明,须警惕临床显著的DDI,并应优化氯氮平的剂量。
文摘生理药代动力学(physiologically based pharmacokinetics,PBPK)是定量药理学的主要研究领域之一,其在新药研发和临床医疗实践的各个阶段均发挥着重要作用,包括药物早期开发阶段的人体药动学(pharmacokinetics,PK)预测、临床研究阶段考察各种生理和病理等因素对PK的影响、特殊人群剂量调整、药物相互作用等。近年来,PBPK模型在工业界的应用越来越广泛,监管机构也认可PBPK模型在药物研发中的积极指导作用。随着模型指导的药物研发的发展和普及,将PBPK模型与其他常用建模方法,包括群体药代动力学(population pharmacokinetics,PopPK)、药代动力学/药效动力学(pharmacokinetic/pharmacodynamic,PK/PD)模型和基于模型的Meta分析(model-based meta-analysis,MBMA)相融合可实现优势互补。本文简介了PBPK的起源、发展和应用现状,并对其与PopPK、PK/PD和MBMA的融合应用进展进行综述。