针对起重机减速齿轮箱的磨损过程具有非线性与时变性,传统磨损趋势预测方法无法有效兼顾预测精度与执行效率的问题,提出了一种基于组合核函数的在线支持向量机回归(online support vector regression,OSVR)预测算法。OSVR的在线学习算...针对起重机减速齿轮箱的磨损过程具有非线性与时变性,传统磨损趋势预测方法无法有效兼顾预测精度与执行效率的问题,提出了一种基于组合核函数的在线支持向量机回归(online support vector regression,OSVR)预测算法。OSVR的在线学习算法能够适应时间序列的时变性并提高执行效率,同时可利用不同的核函数性能,通过组合模型提高预测精度。采用实际齿轮箱铁谱数据对预测算法进行验证,结果表明,基于组合核函数的OSVR预测算法具有很好的预测精度和适应性,能有效预测起重机齿轮箱的磨损故障,且相比于单一OSVR算法和灰色神经网络组合算法有更高的效率和预测精度。展开更多
潮流计算及其灵敏度分析是电力系统稳态分析与控制的基础。传统基于模型驱动的潮流计算是在电网拓扑和模型参数完备条件下,通过构建节点功率非线性方程并采用迭代方式进行求解的,灵敏度则由潮流雅可比矩阵求逆获取。模型及参数的准确性...潮流计算及其灵敏度分析是电力系统稳态分析与控制的基础。传统基于模型驱动的潮流计算是在电网拓扑和模型参数完备条件下,通过构建节点功率非线性方程并采用迭代方式进行求解的,灵敏度则由潮流雅可比矩阵求逆获取。模型及参数的准确性和迭代求解的时效性是影响潮流计算精度和速度的重要因素。该文提出一种数据驱动的潮流非线性回归及灵敏度解析计算方法,以实现不依赖于电网物理模型的潮流快速计算与分析。首先,利用电网潮流量测数据,构建基于改进的多输出最小二乘支持向量回归(multi-output least-squares support vector regression,MLSSVR)的潮流显式回归模型;其次,通过矩阵快速递归求逆,提出MLSSVR在线学习方法,增强对电网运行场景变化的适应性;最后,对潮流回归模型进行泰勒展开,提出潮流灵敏度解析计算方法。所提方法在多个IEEE标准系统和某实际省级电网进行仿真,验证了所提方法可有效得到高准确度的潮流解及其灵敏度。展开更多
为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立...为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。展开更多
文摘针对起重机减速齿轮箱的磨损过程具有非线性与时变性,传统磨损趋势预测方法无法有效兼顾预测精度与执行效率的问题,提出了一种基于组合核函数的在线支持向量机回归(online support vector regression,OSVR)预测算法。OSVR的在线学习算法能够适应时间序列的时变性并提高执行效率,同时可利用不同的核函数性能,通过组合模型提高预测精度。采用实际齿轮箱铁谱数据对预测算法进行验证,结果表明,基于组合核函数的OSVR预测算法具有很好的预测精度和适应性,能有效预测起重机齿轮箱的磨损故障,且相比于单一OSVR算法和灰色神经网络组合算法有更高的效率和预测精度。
文摘潮流计算及其灵敏度分析是电力系统稳态分析与控制的基础。传统基于模型驱动的潮流计算是在电网拓扑和模型参数完备条件下,通过构建节点功率非线性方程并采用迭代方式进行求解的,灵敏度则由潮流雅可比矩阵求逆获取。模型及参数的准确性和迭代求解的时效性是影响潮流计算精度和速度的重要因素。该文提出一种数据驱动的潮流非线性回归及灵敏度解析计算方法,以实现不依赖于电网物理模型的潮流快速计算与分析。首先,利用电网潮流量测数据,构建基于改进的多输出最小二乘支持向量回归(multi-output least-squares support vector regression,MLSSVR)的潮流显式回归模型;其次,通过矩阵快速递归求逆,提出MLSSVR在线学习方法,增强对电网运行场景变化的适应性;最后,对潮流回归模型进行泰勒展开,提出潮流灵敏度解析计算方法。所提方法在多个IEEE标准系统和某实际省级电网进行仿真,验证了所提方法可有效得到高准确度的潮流解及其灵敏度。
文摘为了提高传统内模控制的鲁棒性和抗干扰能力,采用在线支持向量机回归(Online Support Vector Machine Regression,OSVMR)理论建立系统的正向模型和设计逆模控制器。首先简要介绍了OSVMR的原理和算法,然后将其应用于内模控制问题,并建立了OSVMR模型。其次,在控制过程可逆的条件下设计了OSVMR控制器,最后将该控制方法应用于可逆非线性系统和具未知干扰的温室环境控制问题,仿真结果表明该方法与RBF神经网络IMC相比,具有较简单的模型和较好的控制性能。