Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration b...Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.展开更多
This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nano...This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research.展开更多
The hadronic corrections to the muon anomalous magnetic moment αμ,due to the full gaugeinvariant set of diagrams with dynamical quark loop and intermediate pseudoscalar and scalar states lightby-light scattering ins...The hadronic corrections to the muon anomalous magnetic moment αμ,due to the full gaugeinvariant set of diagrams with dynamical quark loop and intermediate pseudoscalar and scalar states lightby-light scattering insertions,are calculated in the framework of the nonlocal chiral quark model. These diagrams correspond to all hadronic light-by-light scattering contributions to α_μ in the leading order of the1 / N_c expansion in quark model. The result of the quark loop contribution is α_μ^(HLbL,Loop)=(11. 0 ± 0. 9) ·10^(-10),and the total result is α_μ^(HLbL,Loop)=(16.8 ± 1.2) ·10^(-10).展开更多
文摘Nonlocal continuum mechanics is a popular growing theory for investigating the dynamic behavior of Carbon nanotubes(CNTs).Estimating the nonlocal constant is a crucial step in mathematical modeling of CNTs vibration behavior based on this theory.Accordingly,in this study a vibration-based nonlocal parameter estimation technique,which can be competitive because of its lower instrumentation and data analysis costs,is proposed.To this end,the nonlocal models of the CNT by using the linear and nonlinear theories are established.Then,time response of the CNT to impulsive force is derived by solving the governing equations numerically.By using these time responses the parametric model of the CNT is constructed via the autoregressive moving average(ARMA)method.The appropriate ARMA parameters,which are chosen by an introduced feature reduction technique,are considered features to identify the value of the nonlocal constant.In this regard,a multi-layer perceptron(MLP)network has been trained to construct the complex relation between the ARMA parameters and the nonlocal constant.After training the MLP,based on the assumed linear and nonlinear models,the ability of the proposed method is evaluated and it is shown that the nonlocal parameter can be estimated with high accuracy in the presence/absence of nonlinearity.
基金supported by The Algerian General Directorate of Scientific Research and Technological Development(DGRSDT)University of Mustapha Stambouli of Mascara(UMS Mascara)in Algeria。
文摘This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research.
基金Supported by by Russian Science Foundation(14-50-00080)RFBR grant(15-02-03391)
文摘The hadronic corrections to the muon anomalous magnetic moment αμ,due to the full gaugeinvariant set of diagrams with dynamical quark loop and intermediate pseudoscalar and scalar states lightby-light scattering insertions,are calculated in the framework of the nonlocal chiral quark model. These diagrams correspond to all hadronic light-by-light scattering contributions to α_μ in the leading order of the1 / N_c expansion in quark model. The result of the quark loop contribution is α_μ^(HLbL,Loop)=(11. 0 ± 0. 9) ·10^(-10),and the total result is α_μ^(HLbL,Loop)=(16.8 ± 1.2) ·10^(-10).