期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
改进SSA优化BP神经网络的变压器故障诊断 被引量:2
1
作者 汪繁荣 汪筠涵 江俊杰 《现代电子技术》 北大核心 2025年第4期145-150,共6页
变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入... 变压器故障类型的准确诊断对保障电网的安全与稳定至关重要。针对BP神经网络与麻雀搜索算法(SSA)存在收敛缓慢和易陷入局部极值导致无法准确诊断的问题,提出将改进的麻雀搜索算法(ISSA)优化BP神经网络应用于变压器故障诊断。首先,引入非线性惯性权重和纵横交叉策略,从而提高算法的收敛速度和全局寻优能力;其次,将ISSA与传统SSA在收敛函数上进行对比分析,得到ISSA算法在迭代12次后以52%的准确率收敛,而SSA算法迭代23次后才达到25%的准确率,证明了ISSA在收敛速度和精度方面有明显提高;最后,将ISSA-BP、SSA-BP和BP诊断模型进行对比。实验结果表明,ISSA-BP模型准确率达到了97%,比SSA-BP、BP神经网络模型分别提高了4%和11%,可以认为提出的算法模型在变压器故障诊断领域具有更高的精度与良好的发展前景。 展开更多
关键词 麻雀搜索算法 BP神经网络 变压器 故障诊断 非线性惯性权重 纵横交叉策略
在线阅读 下载PDF
改进鲸鱼算法构建反向传播神经网络粮食产量预测模型及效果分析
2
作者 赵晶晶 陈岩 《科学技术与工程》 北大核心 2025年第7期2748-2759,共12页
为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线... 为了给农业及其相关部门制定粮食策略提供理论依据,提出一种基于改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)的反向传播(back propagation,BP)神经网络混合算法(IWOA-BP)。该混合算法先通过引入改进收敛因子、非线性惯性权重和最优邻域扰动策略改进鲸鱼优化算法,再将其最优解赋值给BP神经网络的权值和阈值,最终提高IWOA-BP的收敛速度和收敛精度。选取全国近45年粮食总产量和7种影响因素(有效灌溉面积、化肥施用量、农村用电量、农业机械总动力、粮食作物播种面积、受灾面积和农村人均消费支出)作为数据集,构建基于改进鲸鱼算法的反向传播神经网络粮食产量预测模型。多次实验表明,IWOA-BP模型在测试集上的表现均优于其他预测模型,包括长短期记忆网络(long short-term memory network,LSTM)预测模型、极限学习机(extreme learning machine,ELM)预测模型、基于鲸鱼优化算法的BP神经网络(WOA-BP)预测模型以及基于粒子群算法的BP神经网络(PSO-BP)预测模型。IWOA-BP模型和ELM模型相比,前者的均方根误差(root mean square error,RMSE)、平均绝对百分比误差(mean absolute percentage error,MAPE)分别降低了77.12%、88.18%;和LSTM模型相比,前者的RMSE、MAPE分别降低了69.11%、47.36%;和WOA-BP模型相比,前者的平均绝对误差(mean absolute error,MAE)、RMSE和MAPE分别降低了43.78%、43.22%、45.96%。和PSO-BP模型相比,前者的MAE、RMSE、MAPE分别降低了89.67%、90.61%、90.82%。因此IWOA-BP预测模型的决定系数更高、预测误差更小且收敛速度更快,可有效地预测粮食产量,对于农业部门和相关政策制定者来说具有重要的技术参考价值。 展开更多
关键词 粮食产量 反向传播神经网络 鲸鱼优化算法 非线性惯性权重 随机扰动策略
在线阅读 下载PDF
粒子群优化算法的惯性权值递减策略研究 被引量:313
3
作者 陈贵敏 贾建援 韩琪 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第1期53-56,61,共5页
为了有效地控制粒子群优化算法的全局搜索和局部搜索,基于递减惯性权值的基本思想,在现有的线性递减权值策略的基础上,提出了开口向下抛物线、开口向上抛物线和指数曲线3种非线性的权值递减策略,并采用Sphere、Rosenbrock、Griewank和Ra... 为了有效地控制粒子群优化算法的全局搜索和局部搜索,基于递减惯性权值的基本思想,在现有的线性递减权值策略的基础上,提出了开口向下抛物线、开口向上抛物线和指数曲线3种非线性的权值递减策略,并采用Sphere、Rosenbrock、Griewank和Rastrigrin这4个标准测试函数测试这些策略对算法的影响.试验结果表明,对于多数连续优化问题,在初始权值和最终权值相同的情况下,凹函数递减策略优于线性策略,而线性策略优于凸函数策略,凹函数递减策略能够在不影响收敛精度的情况下较大幅度地提高粒子群算法的收敛速度. 展开更多
关键词 粒子群优化算法 惯性权值 递减策略
在线阅读 下载PDF
基于粒子群算法的多传感器数据融合 被引量:5
4
作者 张宇林 蒋鼎国 +2 位作者 黄翀鹏 朱小六 徐保国 《化工学报》 EI CAS CSCD 北大核心 2008年第7期1703-1706,共4页
粒子群算法是一种有效的寻找函数极值的演化计算方法,它简便易行、收敛速度快,但存在收敛精度不高、易陷入局部极值点的缺点。本文对原有算法中的固定惯性权重进行改进,着重分析了惯性权值因子在粒子群优化(PSO)算法中的作用,在现有的... 粒子群算法是一种有效的寻找函数极值的演化计算方法,它简便易行、收敛速度快,但存在收敛精度不高、易陷入局部极值点的缺点。本文对原有算法中的固定惯性权重进行改进,着重分析了惯性权值因子在粒子群优化(PSO)算法中的作用,在现有的线性递减权值方法上,提出一种非线性权值递减策略,并将其尝试性地运用到多传感器融合的领域,运用该算法对数据融合中的加权因子进行估计。实验结果表明,改进的PSO算法能近似最优地确定数据融合中各权值因子,使融合在信息源的可靠性、信息的冗余度/互补性以及进行融合的分级结构不确定的情况下,以近似最优的方式对传感器数据进行融合,有效地从各融合数据中提取有用信息,成功排除噪声干扰,取得了良好的融合结果。 展开更多
关键词 多传感器 数据融合 粒子群优化算法 惯性权值 权值递减策略
在线阅读 下载PDF
惯性权值对粒子群算法收敛性的影响及改进 被引量:15
5
作者 黄翀鹏 熊伟丽 徐保国 《计算机工程》 CAS CSCD 北大核心 2008年第12期31-33,共3页
研究惯性权值对粒子群算法(PSO)收敛性的影响,在分析线性权值递减策略基础上,提出一种基于各粒子适应值的递减策略——FDIW。标准测试函数对比实验表明,该策略可以使粒子在搜索初期获得更好的多样性,从而使粒子具有更强的摆脱局部极值... 研究惯性权值对粒子群算法(PSO)收敛性的影响,在分析线性权值递减策略基础上,提出一种基于各粒子适应值的递减策略——FDIW。标准测试函数对比实验表明,该策略可以使粒子在搜索初期获得更好的多样性,从而使粒子具有更强的摆脱局部极值的能力,在搜索末期可以加快粒子收敛速度以提高PSO算法的性能。 展开更多
关键词 粒子群优化算法 惯性权值 递减策略 适应值
在线阅读 下载PDF
混合策略改进的鲸鱼优化算法 被引量:32
6
作者 郝晓弘 宋吉祥 +1 位作者 周强 马明 《计算机应用研究》 CSCD 北大核心 2020年第12期3622-3626,3655,共6页
针对标准鲸鱼优化算法易出现搜索速度慢、寻优精度低及早熟收敛等问题,提出一种混合策略改进的鲸鱼优化算法。首先采用混沌映射生成初始种群增加种群多样性,为算法全局搜索奠定基础;然后引入非线性策略改进收敛因子和惯性权重,平衡算法... 针对标准鲸鱼优化算法易出现搜索速度慢、寻优精度低及早熟收敛等问题,提出一种混合策略改进的鲸鱼优化算法。首先采用混沌映射生成初始种群增加种群多样性,为算法全局搜索奠定基础;然后引入非线性策略改进收敛因子和惯性权重,平衡算法的全局探索与局部开发能力并加快收敛速度;最后根据群体适应度方差设定阈值进行变异操作,避免算法出现早熟收敛的现象。通过对12个典型基准函数进行三方面的性能测试,实验结果表明,改进算法在搜索速度、收敛精度等方面有显著提高,且摆脱陷入局部最优解的能力强。 展开更多
关键词 鲸鱼优化算法 混沌映射 非线性策略 惯性权重 变异操作
在线阅读 下载PDF
粒子群优化算法中的惯性权值非线性调整策略 被引量:25
7
作者 周敏 李太勇 《计算机工程》 CAS CSCD 北大核心 2011年第5期204-206,共3页
为提升粒子群优化算法的性能,提出基于正弦曲线、正切曲线和对数曲线的非线性惯性权值调整策略。采用镜像策略对越界粒子进行处理,利用标准测试函数测试这些策略对算法的影响。实验结果表明,对于连续函数优化问题,正弦曲线和对数曲线策... 为提升粒子群优化算法的性能,提出基于正弦曲线、正切曲线和对数曲线的非线性惯性权值调整策略。采用镜像策略对越界粒子进行处理,利用标准测试函数测试这些策略对算法的影响。实验结果表明,对于连续函数优化问题,正弦曲线和对数曲线策略优于传统的线性调整策略,而传统的线性调整策略又优于正切曲线策略。 展开更多
关键词 粒子群优化算法 惯性权值 非线性策略 函数优化
在线阅读 下载PDF
基于混合策略改进的鲸鱼优化算法 被引量:28
8
作者 秋兴国 王瑞知 +2 位作者 张卫国 张昭昭 张婧 《计算机工程与应用》 CSCD 北大核心 2022年第1期70-78,共9页
针对标准WOA算法初始种群分布不均、收敛速度较慢、全局搜索能力弱且易陷入局部最优等问题,提出一种混合策略改进的鲸鱼优化算法。采用Sobol序列初始化种群以使初始解在解空间分布更均匀;通过非线性时变因子和惯性权重平衡并提高全局搜... 针对标准WOA算法初始种群分布不均、收敛速度较慢、全局搜索能力弱且易陷入局部最优等问题,提出一种混合策略改进的鲸鱼优化算法。采用Sobol序列初始化种群以使初始解在解空间分布更均匀;通过非线性时变因子和惯性权重平衡并提高全局搜索及局部开发能力,并结合随机性学习策略增加迭代过程中种群的多样性;引入柯西变异提升算法跳出局部最优的能力。通过对12个基准函数和一个水资源需求预测模型的参数估计进行优化实验,结果表明,基于混合策略改进的鲸鱼优化算法在寻优精度及收敛速度上均有明显提升。 展开更多
关键词 鲸鱼优化算法 Sobol序列 非线性策略 惯性权重 随机性学习 柯西变异
在线阅读 下载PDF
基于PSO的RBF神经网络在热工系统辨识中的应用 被引量:4
9
作者 王学厚 韩璞 +1 位作者 李岩 贾增周 《华北电力大学学报(自然科学版)》 CAS 北大核心 2008年第1期52-56,共5页
在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象... 在神经网络辨识大迟延对象时,模型类中迟延时间多是根据经验估测的,而不同的值对神经网络辨识的精度和效率就会不同。针对上述问题,将基于正交最小二乘(OLS)算法的径向基(RBF)神经网络和粒子群优化(PSO)算法相结合对热工系统的复杂对象进行辨识仿真。通过对电厂一次风量数据和平均床温数据的仿真实验结果表明,在RBF神经网络对大迟延对象进行辨识时,通过PSO算法进一步确定其最佳迟延时间,从而得到更精确的模型并提高辨识效率,可以取得良好的效果。 展开更多
关键词 粒子群优化算法 非线性权值递减策略 径向基神经网络 正交最小二乘算法 热工系统辨识
在线阅读 下载PDF
改进PSO-BPNN算法在管道腐蚀预测中的应用 被引量:11
10
作者 肖斌 张恒宾 刘宏伟 《郑州大学学报(工学版)》 CAS 北大核心 2022年第1期27-33,共7页
输油管道由于埋藏环境、运输介质等影响,随着使用年限增加,管道会逐渐出现腐蚀,常规的腐蚀管道剩余强度计算方法有公式计算和有限元分析(FEA)等。针对常规方法中公式计算准确性较低和有限元分析过于复杂的问题,提出了一种改进的粒子群... 输油管道由于埋藏环境、运输介质等影响,随着使用年限增加,管道会逐渐出现腐蚀,常规的腐蚀管道剩余强度计算方法有公式计算和有限元分析(FEA)等。针对常规方法中公式计算准确性较低和有限元分析过于复杂的问题,提出了一种改进的粒子群算法优化的神经网络模型(IPSO-BPNN)来预测腐蚀管道剩余强度。首先,在传统粒子群算法的基础上,提出了一种新的非线性递减惯性权重用于快速更新粒子速度和位置,并引入了遗传交叉算子增加粒子的多样性,形成了改进的粒子群算法(IPSO);其次,采用IPSO算法对神经网络的权重和阈值进行优化,并使用优化后的权重和阈值初始化神经网络,建立了IPSO-BPNN模型;最后,在2个真实的管道测试爆破数据集上进行实验,分别使用线性回归(LR)、FEA、前馈神经网络(BPNN)、粒子群算法前馈神经网络(PSO-BPNN)以及IPSO-BPNN模型对腐蚀管道剩余强度进行预测,使用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)作为评估模型预测性的指标。在2个数据集的测试集上的结果表明:IPSO-BPNN模型的MAE分别为0.525 4、0.718 5,MAPE分别为3.77%、2.68%,RMSE分别为0.672 6、0.947 2,3项指标较LR、FEA、BPNN和PSO-BPNN有明显提升。改进PSO-BPNN算法可以提高腐蚀管道剩余强度预测的准确性,可以为管道检查提供较为准确的依据。 展开更多
关键词 粒子群优化算法 非线性递减惯性权重 神经网络 腐蚀管道 剩余强度
在线阅读 下载PDF
基于CAPSO-ICA的DS-CDMA系统盲多用户检测 被引量:1
11
作者 刘晓志 李静 冯大伟 《系统仿真学报》 CAS CSCD 北大核心 2014年第6期1285-1290,共6页
为解决DS-CDMA系统的多址干扰问题,提出了一种将自适应惯性权重的混沌粒子群算法与独立分量分析方法结合(CAPSO-ICA)的盲多用户检测算法。该算法首先将自适应的非线性递减惯性权重w和混沌运动引入到粒子群(PSO)算法中,有效地避免了传统... 为解决DS-CDMA系统的多址干扰问题,提出了一种将自适应惯性权重的混沌粒子群算法与独立分量分析方法结合(CAPSO-ICA)的盲多用户检测算法。该算法首先将自适应的非线性递减惯性权重w和混沌运动引入到粒子群(PSO)算法中,有效地避免了传统粒子群算法易陷入局部最优的问题,从而使寻优结果更为准确。然后根据各用户相互独立这一特点,将改进的粒子群算法与独立分量分析方法结合起来进行盲多用户检测。仿真结果表明,在相同的条件下,相对于已有的FICA算法和PSO-ICA算法,基于CAPSO-ICA的盲多用户检测算法有更小的误码率,这说明改进算法的多用户检测性能更为优越。 展开更多
关键词 盲多用户检测 独立分量分析 粒子群 混沌 自适应非线性递减惯性权重
在线阅读 下载PDF
基于Sobol序列和纵横交叉策略的麻雀搜索算法 被引量:59
12
作者 段玉先 刘昌云 《计算机应用》 CSCD 北大核心 2022年第1期36-43,共8页
针对麻雀搜索算法(SSA)容易陷入局部最优、收敛速度较慢等问题,提出一种基于Sobol序列和纵横交叉策略的麻雀搜索算法(SSASC)。首先,在初始化阶段引入类随机采样方法中的Sobol序列,以增强种群的多样性和遍历性;其次,提出一种指数形式的... 针对麻雀搜索算法(SSA)容易陷入局部最优、收敛速度较慢等问题,提出一种基于Sobol序列和纵横交叉策略的麻雀搜索算法(SSASC)。首先,在初始化阶段引入类随机采样方法中的Sobol序列,以增强种群的多样性和遍历性;其次,提出一种指数形式的非线性惯性权重,从而提高算法的收敛效率;最后,应用纵横交叉策略对算法进行改进,即利用横向交叉增强全局搜索能力,利用纵向交叉保持种群的多样性并防止算法陷入局部最优。选取了13个基准函数进行仿真实验,同时使用Wilcoxon秩和检验和Friedman检验评价算法的性能。在与其他元启发式算法的对比实验中,将基准函数从10维扩展到100维,SSASC在平均值和标准差处始终优于其他算法。实验结果表明,该算法在收敛速度和求解准确度方面均取得了一定的优势。 展开更多
关键词 麻雀搜索算法 Sobol序列 惯性权重 纵横交叉策略 非线性策略 基准函数
在线阅读 下载PDF
改进鲸鱼算法在电动汽车有序充电中的应用 被引量:16
13
作者 张公凯 陈才学 郑拓 《计算机工程与应用》 CSCD 北大核心 2021年第4期272-278,共7页
为解决大规模电动汽车无序充电对电网稳定性造成的影响,建立了电网层负荷峰谷差最小和用户层充电费用最小的两方面有序充电目标函数。为实现高效且快速的求解,对鲸鱼算法(Whale Optimization Algorithm,WOA)进行了改进,在该算法中加入... 为解决大规模电动汽车无序充电对电网稳定性造成的影响,建立了电网层负荷峰谷差最小和用户层充电费用最小的两方面有序充电目标函数。为实现高效且快速的求解,对鲸鱼算法(Whale Optimization Algorithm,WOA)进行了改进,在该算法中加入两种非线性惯性权重来平衡局部搜索能力和全局搜索能力,并提出了一种教学策略(Teaching-Learning Strategy,TLS)来提高鲸鱼个体的位置质量,教学策略中采用变异手段增加种群的多样性,能有效防止迭代过早停滞。算例中分别利用IWOA、标准WOA、粒子群算法(Particle Swarm Optimization,PSO)测试基准函数,并对电动汽车有序充电优化目标进行求解,最后通过比较验证了IWOA的高效性和实用性。 展开更多
关键词 电动汽车 有序充电 改进鲸鱼算法(IWOA) 非线性惯性权重 教学策略(TLS)
在线阅读 下载PDF
基于支持向量回归积和改进粒子群算法的特定区间盾构机作业参数选取 被引量:3
14
作者 许哲东 侯公羽 +1 位作者 杨丽 黄小军 《中国机械工程》 EI CAS CSCD 北大核心 2022年第24期3007-3014,共8页
为实现特定区间盾构机作业参数更准确的选取,提出了基于支持向量回归积(e-SVR)和改进惯性权重降低速度粒子群优化(IIWDSPSO)算法的盾构机作业参数选取模型。基于e-SVR构建掘进参数、地层参数、几何参数与地表沉降值之间的非线性关系模型... 为实现特定区间盾构机作业参数更准确的选取,提出了基于支持向量回归积(e-SVR)和改进惯性权重降低速度粒子群优化(IIWDSPSO)算法的盾构机作业参数选取模型。基于e-SVR构建掘进参数、地层参数、几何参数与地表沉降值之间的非线性关系模型,并基于实际盾构施工数据与人工神经网络模型、随机森林模型进行性能对比分析;通过10组仿真实验分析惯性权重降低速度对算法性能的影响,基于分析改进的粒子群优化算法优化特定地层参数和几何参数区间的掘进参数。结果表明,e-SVR模型对盾构施工数据样本具有更好的拟合和泛化能力,所提出的IIWDSPSO算法具有更好的准确性、稳定性和收敛概率。实际工程应用结果也验证了所提模型求解出的特定区间掘进参数能使地表沉降值相对更小,得到的掘进参数能够为实际工程提供更准确和可靠的参考。 展开更多
关键词 盾构作业参数 支持向量回归积 改进惯性权重降低速度粒子群优化算法 非线性建模
在线阅读 下载PDF
基于改进径向移动算法的含风电场电力系统优化调度 被引量:14
15
作者 张容畅 韩丽 +1 位作者 刘文涛 史丽萍 《太阳能学报》 EI CAS CSCD 北大核心 2020年第1期225-235,共11页
为应对风电接入对电力系统稳定运行带来的影响,考虑风电高估低估成本、阀点效应、旋转备用约束和网络损耗等常需因素,建立计及风电不确定性的通用经济调度模型。为求解此模型,提出一种改进的径向移动算法(IRMO),该算法针对基本径向移动... 为应对风电接入对电力系统稳定运行带来的影响,考虑风电高估低估成本、阀点效应、旋转备用约束和网络损耗等常需因素,建立计及风电不确定性的通用经济调度模型。为求解此模型,提出一种改进的径向移动算法(IRMO),该算法针对基本径向移动算法易陷入局部最优解的不足,一方面结合遗传算法中种群变异的思想,在迭代过程中随机对一部分粒子进行突变,改善种群多样性,使算法能够跳出局部最优;另一方面引入凹抛物线式的惯性权值非线性递减策略,以进一步增强算法中后期的搜索精度,更易找到全局最优解。最后对含风电场的电力系统进行算例分析和算法对比,验证模型的合理性以及IRMO的优越性。 展开更多
关键词 风电 动态经济调度 径向移动算法 遗传算法 惯性权值 递减策略
在线阅读 下载PDF
具有量子行为的粒子群优化算法惯性权重研究及应用
16
作者 贺伟 邱毅娇 唐普英 《现代电子技术》 2008年第20期159-161,168,共4页
在研究惯性权重对基本PSO算法影响的基础上,根据惯性权重对粒子群算法影响的特点,采用4种惯性权重策略对一种新的具有量子行为的粒子群算法的速度进行调节,比较每种算法的性能,从中找到一种新的性能更好的改进算法,将其用于求解0-1背包... 在研究惯性权重对基本PSO算法影响的基础上,根据惯性权重对粒子群算法影响的特点,采用4种惯性权重策略对一种新的具有量子行为的粒子群算法的速度进行调节,比较每种算法的性能,从中找到一种新的性能更好的改进算法,将其用于求解0-1背包问题。实验结果表明较好地选择惯性权重参数对算法的性能有很大提高,该改进算法在求解0-1背包问题中具有高效性,提高了最优解的精度,同时具有较快的收敛速度。 展开更多
关键词 粒子群优化算法 量子行为 惯性权重 递减策略 0—1背包问题
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部