期刊文献+
共找到825篇文章
< 1 2 42 >
每页显示 20 50 100
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
1
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
在线阅读 下载PDF
Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems 被引量:5
2
作者 Chen Weisheng Li Junmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期611-618,共8页
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r... For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example. 展开更多
关键词 nonlinear time-delay system neural network adaptive bounding technique memoryless adaptive NN controller.
在线阅读 下载PDF
Neural network based adaptive sliding mode control of uncertain nonlinear systems 被引量:4
3
作者 Ghania Debbache Noureddine Goléa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期119-128,共10页
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat... The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results. 展开更多
关键词 nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness.
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
4
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 Fuzzy logic neural networks Adaptive control nonlinear dynamic system.
在线阅读 下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
5
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
Adaptive neural control for a class of uncertain stochastic nonlinear systems with dead-zone
6
作者 Zhaoxu Yu Hongbin Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期500-506,共7页
The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neur... The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results. 展开更多
关键词 adaptive control neural network(NN) BACKSTEPPING stochastic nonlinear system.
在线阅读 下载PDF
Survey on nonlinear reconfigurable flight control 被引量:3
7
作者 Xunhong Lv Bin Jiang +1 位作者 Ruiyun Qi Jing Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期971-983,共13页
An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are co... An overview on nonlinear reconfigurable flight control approaches that have been demonstrated in flight-test or highfidelity simulation is presented. Various approaches for reconfigurable flight control systems are considered, including nonlinear dynamic inversion, parameter identification and neural network technologies, backstepping and model predictive control approaches. The recent research work, flight tests, and potential strength and weakness of each approach are discussed objectively in order to give readers and researchers some reference. Finally, possible future directions and open problems in this area are addressed. 展开更多
关键词 reconfigurable flight control (RFC) nonlinear dynamic inversion (NDI) BACKSTEPPING neural network (NN) model predictive control (MPC) parameter identification (PID) adaptive control flight control.
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
8
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 neural networks Adaptive control nonlinear control Radial basis function networks Recursive least squares.
在线阅读 下载PDF
An Optimal Control Scheme for a Class of Discrete-time Nonlinear Systems with Time Delays Using Adaptive Dynamic Programming 被引量:17
9
作者 WEI Qing-Lai ZHANG Hua-Guang +1 位作者 LIU De-Rong ZHAO Yan 《自动化学报》 EI CSCD 北大核心 2010年第1期121-129,共9页
关键词 非线性系统 最优控制 控制变量 动态规划
在线阅读 下载PDF
Distributed Adaptive Tracking Control for Unknown Nonlinear Networked Systems 被引量:2
10
作者 PENG Jun-Min WANG Jia-Nan YE Xu-Dong 《自动化学报》 EI CSCD 北大核心 2013年第10期1729-1735,共7页
在这份报纸,我们为易于一个积极领导人,其仅仅说罐头的非线性的不明确的联网的系统的一个类调查合作追踪问题部分被测量,输入隧道也被扰乱。由神经网络(NN ) 的优点技术,追随者的动力学适当地在某些基础功能上被建模,他们的输入隧... 在这份报纸,我们为易于一个积极领导人,其仅仅说罐头的非线性的不明确的联网的系统的一个类调查合作追踪问题部分被测量,输入隧道也被扰乱。由神经网络(NN ) 的优点技术,追随者的动力学适当地在某些基础功能上被建模,他们的输入隧道被假定也被扰乱。在这个工作,基于观察员的适应控制为可以有非相同的动力学的非线性的联网的系统被建议。它被适当地在一些图状况下面选择参数经由 Lyapunov 理论(UUB ) 显示出全面系统最终一致地合作地被围住。最后,几数字模拟为建议适应控制器的确认被详细描述。 展开更多
关键词 非线性网络系统 自适应跟踪控制 LYAPUNOV理论 分布式 自适应控制器 一致最终有界 网络化系统 动力非线性
在线阅读 下载PDF
Direct adaptive control for a class of MIMO nonlinear discrete-time systems
11
作者 Lei Li Zhizhong Mao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期129-137,共9页
This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems... This paper considers the problem of adaptive con-trol for a class of multiple input multiple output (MIMO) nonlinear discrete-time systems based on input-output model with unknown interconnections between subsystems. Based on the Taylor ex-pand technology, an equivalent model in affine-like form is derived for the original nonaffine nonlinear system. Then a direct adap-tive neural network (NN) control er is implemented based on the affine-like model. By finding an orthogonal matrix to tune the NN weights, the closed-loop system is proven to be semiglobal y uni-formly ultimately bounded. The σ-modification technique is used to remove the requirement of persistence excitation during the adaptation. The control performance of the closed-loop system is guaranteed by suitably choosing the design parameters. 展开更多
关键词 adaptive control nonaffine nonlinear discrete-timesystem equivalent affine-like model neural network (NN).
在线阅读 下载PDF
Artificial Neural Network for Combining Forecasts
12
作者 Shanming Shi, Li D. Xu & Bao Liu(Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309, USA)(Department of MSIS, Wright State University, Dayton, OH 45435,USA)(Institute of Systems Engineering, Tianjin University, Tianjin 30 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1995年第2期58-64,共7页
This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods a... This paper proposes artificial neural networks (ANN) as a tool for nonlinear combination of forecasts. In this study, three forecasting models are used for individual forecasts, and then two linear combining methods are used to compare with the ANN combining method. The comparative experiment using real--world data shows that the prediction by the ANN method outperforms those by linear combining methods. The paper suggests that the ANN combining method can be used as- an alternative to conventional linear combining methods to achieve greater forecasting accuracy. 展开更多
关键词 artificial neural network Forecasting Combined forecasts nonlinear systems.
在线阅读 下载PDF
基于人工智能技术的舰船自动驾驶控制系统
13
作者 李尚富 陈大伟 《舰船科学技术》 北大核心 2025年第10期181-184,共4页
为增强舰船面对大风、海浪等外界干扰时的航向控制能力,设计基于人工智能技术的舰船自动驾驶控制系统。构建具备非线性特征的船舶航向控制系统数学模型,并将其转换成状态空间形式进行描述,以此为基础,采用人工智能技术中的模糊神经网络(... 为增强舰船面对大风、海浪等外界干扰时的航向控制能力,设计基于人工智能技术的舰船自动驾驶控制系统。构建具备非线性特征的船舶航向控制系统数学模型,并将其转换成状态空间形式进行描述,以此为基础,采用人工智能技术中的模糊神经网络(FNN)与Bang-Bang控制相结合的方式搭建舰船自动控制系统结构,其中Bang-Bang控制器以航向偏差和偏差变化率为输入,实现快速消除较大航向偏差,模糊神经控制器同样以此为输入,负责在偏差较小时进行精细调控,二者协同实现舰船自动驾驶控制。实验结果表明,该系统能有效应对外界干扰,稳定跟踪航向,减少频繁操舵与超调,可快速将航向稳定在目标值,实现更优的舰船自动驾驶控制。 展开更多
关键词 人工智能 模糊神经网络 航向偏差 自动驾驶 舰船控制
在线阅读 下载PDF
基于模糊RBF滑模控制的被动式电液负载模拟器力加载策略研究
14
作者 李航 罗小辉 曹树平 《机床与液压》 北大核心 2025年第12期98-105,共8页
针对大负载工作条件以及系统中存在的舵机运动干扰等问题,以300 kN惯性负载被动式电液负载模拟器为研究对象,在扰动频率不低于2 Hz的工况下开展力加载精度提升试验。考虑实际工作过程中非线性因素与不确定性因素的影响,建立系统非线性... 针对大负载工作条件以及系统中存在的舵机运动干扰等问题,以300 kN惯性负载被动式电液负载模拟器为研究对象,在扰动频率不低于2 Hz的工况下开展力加载精度提升试验。考虑实际工作过程中非线性因素与不确定性因素的影响,建立系统非线性数学模型;基于神经网络能够逼近任意非线性函数的优势,结合滑模控制理论与模糊RBF神经网络算法,设计一种模糊RBF滑模控制器,通过模糊RBF神经网络输出值对滑模控制律中的未知项进行估计补偿,使模糊RBF滑模控制器不再依赖系统的准确参数;根据Lyapunov稳定性理论得到神经网络学习率,并证明控制器的稳定性;最后在MATLAB/Simulink环境下搭建数值仿真平台进行仿真试验。结果表明:与PID控制器、RBF神经网络滑模控制器相比,所设计的模糊RBF滑模控制器具有优良的力加载跟踪效果以及良好的抗干扰能力。 展开更多
关键词 电液负载模拟器 非线性模型 滑模控制 模糊RBF神经网络 加载精度
在线阅读 下载PDF
基于改进的灰狼算法优化BP神经网络的入侵检测方法
15
作者 彭庆媛 王晓峰 +3 位作者 唐傲 华盈盈 何飞 刘建平 《现代电子技术》 北大核心 2025年第13期96-104,共9页
当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改... 当今世界的网络安全问题日益突出,入侵检测技术作为网络安全领域的重要组成部分得到迅速发展。目前,BP神经网络广泛应用于入侵检测。但传统BP神经网络权值选取不精确、学习效率低以及易陷入局部极小值,针对以上缺点,文中提出一种基于改进的灰狼算法优化BP神经网络的入侵检测方法。改进的灰狼算法通过改变线性控制参数,以及在灰狼位置更新公式中加入反余切惯性权重策略,以扩展狼群的搜索范围,从而避免陷入局部最优解。利用改进的算法优化BP神经网络的初始权值和阈值,将优化的BP神经网络应用于入侵检测。实验结果表明,改进的灰狼算法具有更好的稳定性、寻优效率和寻优精度,改进的入侵检测方法不易陷入局部极小值,泛化能力强,预测精度高和可靠性好。 展开更多
关键词 非线性控制参数 惯性权重 灰狼优化算法 BP神经网络 入侵检测 网络安全
在线阅读 下载PDF
输出反馈式神经网络的机械臂轨迹跟踪控制
16
作者 倪元相 刘芳 《南京师大学报(自然科学版)》 北大核心 2025年第3期93-101,共9页
为提高干扰场景下机械臂运动轨迹的跟踪控制精度,提出了基于输出反馈和人工神经网络(ANN)的自适应机械臂控制方案.通过3-DOF机械臂的运动学和动力学建模,推导出基于角位置信息的控制策略,其中考虑到了参数不确定性和动力模型误差,提高... 为提高干扰场景下机械臂运动轨迹的跟踪控制精度,提出了基于输出反馈和人工神经网络(ANN)的自适应机械臂控制方案.通过3-DOF机械臂的运动学和动力学建模,推导出基于角位置信息的控制策略,其中考虑到了参数不确定性和动力模型误差,提高机械臂对未知干扰的鲁棒性.使用以B样条函数(B-spline)为基函数的ANN,通过基于粒子群优化(PSO)算法的离线训练确定初始控制增益,并通过控制增益的在线更新提供自适应能力,实现跟踪误差和控制成本最小化.仿真结果表明,所提方法在关节空间和笛卡尔空间中均能实现机械臂的准确控制和平滑移动,在有干扰场景下的控制性能显著优于比较方法,适用于激光切割、激光打印等高精度应用. 展开更多
关键词 机械臂 自适应跟踪控制 人工神经网络 角位置 粒子群优化
在线阅读 下载PDF
基于强化学习自抗扰的气垫船进坞控制策略
17
作者 王元慧 张峻恺 吴鹏 《哈尔滨工程大学学报》 北大核心 2025年第7期1340-1348,共9页
针对全垫升气垫船进坞过程出现的误差较大、速度较慢及易发生碰撞等问题,本文采用强化学习中的确定性策略梯度算法优化非线性自抗扰控制器设计的方法,并将优化后的自抗扰控制与PID控制相结合,通过对气垫船的艏向、航速与横向位移进行控... 针对全垫升气垫船进坞过程出现的误差较大、速度较慢及易发生碰撞等问题,本文采用强化学习中的确定性策略梯度算法优化非线性自抗扰控制器设计的方法,并将优化后的自抗扰控制与PID控制相结合,通过对气垫船的艏向、航速与横向位移进行控制,实现了一种气垫船进坞的控制策略。通过仿真验证了此控制策略在对目标艏向快速跟踪的同时,提高了艏向控制对不确定性干扰的抵抗能力,实现了进坞过程的快速性与准确性。 展开更多
关键词 全垫升气垫船 非线性自抗扰控制 强化学习 确定性策略梯度 神经网络 PID控制 艏向控制 航速控制 外界扰动
在线阅读 下载PDF
神经网络优化非线性磁链的双三相PMSM无感控制
18
作者 赵化勇 田伟 吉敬华 《组合机床与自动化加工技术》 北大核心 2025年第4期129-132,139,共5页
针对中低速情况下双三相永磁同步电机无传感器控制精度低,非线性磁链观测器在静止和低速时稳定性差的问题,提出一种结合BP神经网络的离散型非线性磁链观测器。首先,结合电流方程构建非线性磁链观测器并利用欧拉离散法进行离散化;其次,采... 针对中低速情况下双三相永磁同步电机无传感器控制精度低,非线性磁链观测器在静止和低速时稳定性差的问题,提出一种结合BP神经网络的离散型非线性磁链观测器。首先,结合电流方程构建非线性磁链观测器并利用欧拉离散法进行离散化;其次,采用BP神经网络优化非线性磁链的固定增益,实现增益在线调节,同时提出自适应高频信号注入方法,解决了非线性磁链观测器受固定增益值限制观测误差大和低速情况下稳定性差的问题;最后,在MATLAB环境下搭建了仿真模型验证提出的算法,并且仿真结果显示新型观测器的位置误差减小了37.5%以上,收敛速度提升了50%以上,有效地抑制系统抖振,具有更强的鲁棒性。 展开更多
关键词 双三相永磁同步电机 矢量控制 离散型非线性磁链观测器 BP神经网络 高频信号注入
在线阅读 下载PDF
基于弹性限负荷及非线性定价的柔性负荷控制策略研究
19
作者 吕延哲 衡俊良 +1 位作者 高洪涛 王向宇 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第4期488-494,共7页
针对柔性负荷在电价低谷时段集中需求响应不佳等问题,采用弹性限负荷算法实现对柔性负荷的混合控制。提出一种用非线性价格参数来调节负荷需求曲线高次项的控制方法,通过惩罚负荷柔性来提高负荷需求曲线的平滑度,抑制低价时段的电采暖... 针对柔性负荷在电价低谷时段集中需求响应不佳等问题,采用弹性限负荷算法实现对柔性负荷的混合控制。提出一种用非线性价格参数来调节负荷需求曲线高次项的控制方法,通过惩罚负荷柔性来提高负荷需求曲线的平滑度,抑制低价时段的电采暖需求高峰,降低负荷响应的控制偏差,并对东北某地社区1032户居民的电采暖开展负荷响应控制实验,验证方法的有效性。研究结果表明:柔性负荷控制方法可有效抑制电价低谷时段的负荷需求高峰。与采用线性参数进行负荷控制的传统方法相比,柔性负荷控制方法能使负荷需求曲线平滑度提升56.3个百分点,使负荷响应控制偏差降低16.8个百分点。弹性限负荷区间随负荷需求的增加而变宽,在电价分界时段,为保证负荷响应速度,弹性限负荷区间会急剧缩窄。研究结论为提高电力供应的稳定性提供参考。 展开更多
关键词 柔性负荷 电采暖 非线性定价 弹性限负荷 人工免疫 BP神经网络
在线阅读 下载PDF
迁移增量启发式动态规划及污水处理应用
20
作者 王鼎 李鑫 《北京工业大学学报》 北大核心 2025年第3期277-283,共7页
针对污水处理系统中的溶解氧(dissolved oxygen,DO)质量浓度控制问题,提出一种迁移增量启发式动态规划(transferable incremental heuristic dynamic programming,TI-HDP)算法。针对污水处理过程的特性,该算法通过将控制变量的更新方式... 针对污水处理系统中的溶解氧(dissolved oxygen,DO)质量浓度控制问题,提出一种迁移增量启发式动态规划(transferable incremental heuristic dynamic programming,TI-HDP)算法。针对污水处理过程的特性,该算法通过将控制变量的更新方式改进为增量形式,提升了算法的抗干扰能力,并弱化了与增量式比例-积分-微分(proportional-integral-derivative,PID)算法之间的结构差异。基于数据驱动的思想,通过利用PID算法所产生的历史数据,成功地将传统控制领域中的专家经验迁移到TI-HDP算法框架中,保证了TI-HDP算法前期控制策略的稳定性。仿真结果表明:与PID算法和传统的启发式动态规划算法相比,所提算法对DO质量浓度具有更高的控制精度。 展开更多
关键词 启发式动态规划(heuristic dynamic programming HDP) 智能控制 知识迁移 非线性系统 神经网络 污水处理
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部