Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the...Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.展开更多
Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are st...Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.展开更多
Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or C...Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.展开更多
Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influenc...Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.展开更多
Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium ...Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.展开更多
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The...This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.展开更多
Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the sta...Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.展开更多
Combustion chamber components (cylinder head, cylinder liner, piston assembly and oil film) are treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, a ...Combustion chamber components (cylinder head, cylinder liner, piston assembly and oil film) are treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, a coupled three-dimensional calculation model for the in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupling method, in which the coupled three-dimensional simulation of in-cylindcr working process and the combustion chamber components was adopted. The simulation was applied in the influence investigation of the space non-uniformity in heat transfer among combustion chamber components on the generation of in-cylinder emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NOx emissions. The heat transfer space non-uniformity of combustion chamber components has little effect on soot formation, and far less effect on soot formation than on NOx. Under two situations of different wall temperature distributions, the soot in cylinder is different by 1.3% when exhaust valves are open.展开更多
With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorat...With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.展开更多
[Background]Soil erosion,the process by which soil is eroded,transported,and deposited by external forces like wind and water,is a widespread global phenomenon with significant env ironmental and economic impacts.Over...[Background]Soil erosion,the process by which soil is eroded,transported,and deposited by external forces like wind and water,is a widespread global phenomenon with significant env ironmental and economic impacts.Over the past two decades,China's soil erosion research has made significant strides,reaching a world-class level in both quality and quantity.However,there has been a lack of comprehensive studies summarizing the overall situation and development trends in this field.This study aims to fill that gap by providing an overview of the current status and trends in China's soil erosion research.[Methods]This study employed bibliometric methods to analyze 6588 journal articles on soil erosion in China,collected from the Scopus database.The analysis focused on several key aspects,including the number of publications,subject areas,leading research institutes,funding organizations,key research themes,and patterns of international collaboration.Additionally,network maps were generated using VOSviewer to visualize the intellectual structure and connections within the research field,offering insights into how different research topics and institutes are interconnected.[Results]The findings reveal a significant increase in the number of publications since the 1980s,rising from just 4 articles in 1981 to 699 articles in 2023.While soil erosion research is multidisciplinary in nature,the most popular subject areas were“Environmental Science”“Agriculture and Biological Sciences”and“Earth and Planetary Sciences”.The Chinese Academy of Sciences is the most productive institute,with several universities and government research institutes also making substantial contributions.The primary funding source was government organizations,with the National Natural Science Foundation of China being the largest funder.Journals focusing on water and soil,ecology,and environmental sciences were the primary platforms for publishing soil erosion research in China.Catena,Science of the Total Environment,Transactions of CSAM,and Acta Ecologica Sinica were the most productive journals.Six international collaboration networks were identified in this field.There are collaboration networks in this field.The large cluster is centered on China,connecting some European Union countries.This is followed by a small cluster of commonwealth countries headed by the United Kingdom.The rest are bilateral collaborations between two countries that do not form networks.The major research themes identified were“soil erosion and land degradation”“erosion dynamics and drivers”“soil erosion process and mechanism”and“erosion monitoring technology”.Earlier research was heavily focused on topics such as“GIS”“remote sensing”“Cs-137”“landscape pattern”“vegetation restoration”“simulated rainfall”“loess plateau”and“black soil.”In contrast,recent studies have shifted towards“climate change”“ecosystem services”“soil erodibility”“gully erosion”and“RUSLE”.[Conclusions]This study offers a comprehensive overview of China's soil erosion research,serving as a valuable resource for researchers and policy-makers interested in understanding the knowledge structure and development trends in this field.Additionally,the study highlights emerging research topics and potential areas for future exploration,thereby guiding the direction of subsequent studies in soil erosion.展开更多
The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlin...The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.展开更多
Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics aft...Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics after adding to the soil.However,the mechanism remains unclear for the relation between the soil organic matter level and biochar amount.So,the soil physical and chemical properties and soybean growth in a two-year pot experiment were detected at three levels of soil organic matter and three biochar additions(0,1%and 10%).The difference was found in two biochar application rates.The 1%biochar addition had no positive effect on the soil chemical properties based the two-year experiment.However,10%biochar application significantly increased the soil water content(8.0%-39.7%),the total porosity(9.7%-21.3%),pH(0.26-0.84 unit),organic matter content(89.0%-261.2%),and the available potassium content(29.0%-109.1%).The biomass of soybean increased by 19.4%-78.1%after biochar addition,yet,the soil bulk density reduced at the range of 12.6%-26.0%by 10%biochar addition.Only the 100-grain weight was correlated to the interaction of biochar and the native soil organic matter.All the indicators showed that the interaction between biochar and soil organic matter level was weak in mollisol.The effects of biochar on the physical-chemical properties relied on its amount.When biochar is applied to the soil,the amount of biochar should be considered rather than the native soil organic matter level.展开更多
[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global cl...[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.展开更多
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and...The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption.展开更多
The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consol...The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.展开更多
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
基金National Natural Science Foundation of China(No.41967035)。
文摘Treatment of peat soil foundation in Yunnan surrounding Dianchi and Erhai Lakes poses complex problems for engineering projects.It is insufficient to rely on ordinary cement to reinforce peat soil.In order to make the reinforcement reliable,this experiment mixed(ultrafine cement)UFC into ordinary cement to form a composite solidify agent.This study aimed to analyze the influence of UFC proportion on the strength of cement-soil in the peat soil environment.Unconfined compressive strength(UCS)and scanning electron microscope(SEM)tests were conducted on samples soaked for 28 and 90 days,respectively.The test results show that without considering the effects of Humic Acid(HA)and Fulvic Acid(FA),incorporating UFC can significantly improve the UCS of cement-soil.The rapid hydration of the fine particles generates a large number of cementitious products,improves the cohesion of the soil skeleton,and fills the pores.However,when the proportion of UFC increases,the aggregate structure formed by a larger quantity of fine particles reduces the hydration rate and degree of cement hydration,making the UCS growth rate of cement-soil insignificant.In the peat soil environment,HA significantly weakened the UCS of cement-soil in both physical and chemical aspects.However,UFC can mitigate the adverse effect of HA on cement-soil by its small particle size,high surface energy,and solid binding ability.In addition,FA has a positive effect on the UCS of cement-soil soaked for 28 days and 90 days.The UFC addition could promote the enhancement effect of FA on cement-soil UCS.SEM test results showed that cement hydration products increased significantly with the increase of UFC proportion,and cementation between hydration products and soil particles was enhanced.The size and connectivity of cement-soil pores were significantly reduced,thereby improving cement-soil structural integrity.
基金the Experimental Technology Research Project of Zhejiang University(SYB202138)National Natural Science Foundation of China(32000195).
文摘Soil DNA extraction,such as microbial community analysis and gene drift detection,is an important basis for multiple analyses in different fields.Nevertheless,the soil DNA extraction methods for field detection are still lacking.This study established a rapid soil DNA extraction(RSDE)method that can be used in field detection.In this method,we first utilized the optimized lysate to isolate DNA from soil and then used a filtration membrane and a DNA adsorption membrane to purify the DNA via the column method.Moreover,we used the pressure from the syringe instead of the conventional centrifugal force of the centrifuge to assist the sample filtration,resulting in very low requirements for this method,with an extraction time of less than 20 min.Furthermore,we demonstrated that the RSDE method was applicable for DNA extraction from different types of soils,with the demand for soil samples as low as 0.1 g and that the amount of obtained DNA was,to some extent,greater than that obtained by a commercial kit.Further analysis revealed that this extracted genomic DNA can be used directly for polymerase chain reaction(PCR)analysis,including ordinary PCR,real-time fluorescent quantitative PCR,and recombinase polymerase amplification(RPA)-CRISPR/Cas12a visual assays.In addition,we demonstrated that this method can be used to extract DNA from residual plant roots in addition to soil microbes,which lays a foundation for the comprehensive analysis of soil plants and microorganisms.In summary,the RSDE method proposed in this study may have wide application prospects.
基金Supported by the Joint Funds of the National Natural Science Foundation of China(U2340219)。
文摘Cadmium(Cd)or excess copper(Cu)has a great impact in terms of toxicity on living organisms as it severely affects crop growth,yield and food security;thus,warranting appropriate measures for the remediation of Cd or Cu polluted soils.Phytoextraction of heavy metal(HM)using tolerant plants along with organic chelators has gained global attention,and this study provided further insights into this issue.Pot experiments were performed to evaluate the effects of different types of chelators[ethylenediamine tetraacetic acid(EDTA),ethylenediamine disuccinic acid(EDDS)and citric acid(CA)]to improve the phytoextraction capacity of Ricinus communis L.for the metals Cd and Cu.Contaminated soil from a copper smelter was used in this study.A rhizon soil sampler was used to determine the metal concentrations in soil pore water.The results indicated that R.communis was an adequate candidate for chelator induced phytoextraction under the experimental conditions and that EDDS would be a good candidate chelator for the phytoextraction of Cu in soils.EDTA addition obviously improved the uptake of Cd and Cu in R.communis;however,it posed the greatest risk because the concentration of HMs in soil pore water was very high even after 40 days.Compared with EDTA and EDDS,CA had few effects on Cd or Cu uptake in R.communis.Linear relationships between the metal uptake in R.communis shoots and the maximum HM concentrations in soil pore water under HM,2.5,5,and 10 mmol·kg^(-1) treatments were typically observed.From the results of this study,it could be concluded that EDDS treatments played a promising role in increasing the uptake of Cd or Cu and reducing its phytotoxicity.EDDS application could be an effective approach for the phytoextraction of Cd or Cu from polluted soils by growing Ricinus communis L.
基金Project(2020YFC1908802)supported by the National Key Research and Development Project of China。
文摘Biochar-derived dissolved organic matter(BCDOM),an essential component of biochar,plays a vital role in regulating the physicochemical and biological properties of soils during biochar application.However,the influence of BCDOM on soil organisms has not been clearly explained.Hence,this review aims to discuss the factors affecting BCDOM and its interaction with soil substances including organic pollutants,heavy metals,and microorganisms.Results displayed that the quantity of BCDOM ranges from 0.17 to 37.03 mg/g,which was influenced by feedstock,preparation methods of biochar,and extraction methods.With the decrease in lignin content of feedstocks,carbonization temperature,and acidity of extraction solution,the content of BCDOM increased.Through complexation and adsorption,protein-like components in BCDOM interact with heavy metals,promoting the adsorption and immobilization of heavy metals onto biochar.Furthermore,BCDOM enhances the adsorption of organic pollutants by biochar throughπ−πinteractions,hydrogen bonding,and redox processes.More importantly,BCDOM promotes plant growth by enhancing microbial activities,providing nutrients,and improving soil properties.However,the transport and fate of BCDOM in soil have not been well studied,and more researches are needed to explore the interaction mechanisms between BCDOM and soil organisms.
基金Project(22376221)supported by the National Natural Science Foundation of ChinaProject(2024JJ2074)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023QNRC001)supported by the Young Elite Scientists Sponsorship Program by CAST。
文摘Understanding the adsorption behavior of heavy metals and metalloids on clay minerals is essential for remediating heavy metal-contaminated soils.The adsorption of heavy metals and metalloids on illite(001)and sodium montmorillonite(Na-MMT)(001)surfaces was investigated using first-principles calculations in this study,especially As atom and H_(3)AsO_(3) molecule.The adsorption energies of the As atom were−1.94 eV on the illite(001)and−0.56 eV on the Na-MMT(001),whereas,the adsorption energies of the H_(3)AsO_(3) molecule were−1.40 eV on illite(001)and−1.01 eV on Na-MMT(001).The above results indicate that the adsorption was more energetically favorable on illite(001).Additionally,compared to Na-MMT(001),there were more significant interactions between the atoms/molecules on the illite(001).After As atom and H_(3)AsO_(3) molecule adsorption,the electrons were transferred from mineral surface atoms to the adsorbates on both illite(001)and Na-MMT(001)surfaces.Moreover,the adsorption of As atom on illite(001)and Na-MMT(001)surfaces were more energy favorable compared to Hg,Cd,and Cr atoms.Overall,this work provides new insights into the adsorption behavior of As atoms and As molecules on illite and Na-MMT.The results indicate that illite rich soils are more prone to contamination by arsenic compared to soils primarily composed of Na-MMT minerals.
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
文摘This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.
基金Project(51925402) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(202303021211060) supported by the Natural Science Research General Program for Shanxi Provincial Basic Research Program,China+1 种基金Project(U22A20169) supported by the Joint Fund Project of National Natural Science Foundation of ChinaProjects(2021SX-TD001, 2021SX-TD002) supported by the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering,China。
文摘Backfill mining is one of the most important technical means for controlling strata movement and reducing surface subsidence and environmental damage during exploitation of underground coal resources. Ensuring the stability of the backfill bodies is the primary prerequisite for maintaining the safety of the backfilling working face, and the loading characteristics of backfill are closely related to the deformation and subsidence of the roof. Elastic thin plate model was used to explore the non-uniform subsidence law of the roof, and then the non-uniform distribution characteristics of backfill bodies’ load were revealed. Through a self-developed non-uniform loading device combined with acoustic emission (AE) and digital image correlation (DIC) monitoring technology, the synergistic dynamic evolution law of the bearing capacity, apparent crack, and internal fracture of cemented coal gangue backfills (CCGBs) under loads with different degrees of non-uniformity was deeply explored. The results showed that: 1) The uniaxial compressive strength (UCS) of CCGB increased and then decreased with an increase in the degree of non-uniformity of load (DNL). About 40% of DNL was the inflection point of DNL-UCS curve and when DNL exceeded 40%, the strength decreased in a cliff-like manner;2) A positive correlation was observed between the AE ringing count and UCS during the loading process of the specimen, which was manifested by a higher AE ringing count of the high-strength specimen. 3) Shear cracks gradually increased and failure mode of specimens gradually changed from “X” type dominated by tension cracks to inverted “Y” type dominated by shear cracks with an increase in DNL, and the crack opening displacement at the peak stress decreased and then increased. The crack opening displacement at 40% of the DNL was the smallest. This was consistent with the judgment of crack size based on the AE b-value, i. e., it showed the typical characteristics of “small b-value-large crack and large b-value-small crack”. The research results are of significance for preventing the instability and failure of backfill.
基金Projects(50576008,50876016,51006015) supported by the National Natural Science Foundation of ChinaProject(20062180) supported by the Natural Science Foundation of Liaoning Province, ChinaProject(20100470070) supported by China Postdoctoral Science Foundation
文摘Combustion chamber components (cylinder head, cylinder liner, piston assembly and oil film) are treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, a coupled three-dimensional calculation model for the in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupling method, in which the coupled three-dimensional simulation of in-cylindcr working process and the combustion chamber components was adopted. The simulation was applied in the influence investigation of the space non-uniformity in heat transfer among combustion chamber components on the generation of in-cylinder emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NOx emissions. The heat transfer space non-uniformity of combustion chamber components has little effect on soot formation, and far less effect on soot formation than on NOx. Under two situations of different wall temperature distributions, the soot in cylinder is different by 1.3% when exhaust valves are open.
基金Supported by China Agriculture Research System(Sugar Crops)of Ministry of Agriculture and Rural Affairs and Ministry of Finance(CARS-170601)Natural Science Foundation of Heilongjiang Province(C201239).
文摘With the advancement of agricultural mechanization,soil compaction has become a serious environmental problem.Soil compaction can increase soil bulk density and firmness,reduce porosity and permeability,and deteriorate soil structure,ultimately inhibit sugar beet growth and reduce both root yield and sugar content.However,few farmers recognize the link between soil compaction and these adverse effects.Soil compaction has a cumulative effect,with significant differences observed in the vertical range of compaction accumulation.The most significant soil compaction occurs in the topsoil of 0-10 cm,and the influence depth can reach 70 cm,but it is small in deep soil,and the inflection point is at a soil depth of 10 cm.The degree of soil compaction is related to soil type,water content,tractor shaft load,tyre type,tyre pressure and operation speed,etc.Therefore,in the production process of sugar beet,it is advisable to avoid high-humidity operations,use low pressure tyres,reduce the number of tractor-units passes over the farmland,and implement agricultural and agronomic measures to minimize soil compaction.These practices will help protect the soil environment and ensure sustainable production of sugar beets.
基金National Science and Technology Council(112-2625-M-034-002-,113-2625-M-034-002-)。
文摘[Background]Soil erosion,the process by which soil is eroded,transported,and deposited by external forces like wind and water,is a widespread global phenomenon with significant env ironmental and economic impacts.Over the past two decades,China's soil erosion research has made significant strides,reaching a world-class level in both quality and quantity.However,there has been a lack of comprehensive studies summarizing the overall situation and development trends in this field.This study aims to fill that gap by providing an overview of the current status and trends in China's soil erosion research.[Methods]This study employed bibliometric methods to analyze 6588 journal articles on soil erosion in China,collected from the Scopus database.The analysis focused on several key aspects,including the number of publications,subject areas,leading research institutes,funding organizations,key research themes,and patterns of international collaboration.Additionally,network maps were generated using VOSviewer to visualize the intellectual structure and connections within the research field,offering insights into how different research topics and institutes are interconnected.[Results]The findings reveal a significant increase in the number of publications since the 1980s,rising from just 4 articles in 1981 to 699 articles in 2023.While soil erosion research is multidisciplinary in nature,the most popular subject areas were“Environmental Science”“Agriculture and Biological Sciences”and“Earth and Planetary Sciences”.The Chinese Academy of Sciences is the most productive institute,with several universities and government research institutes also making substantial contributions.The primary funding source was government organizations,with the National Natural Science Foundation of China being the largest funder.Journals focusing on water and soil,ecology,and environmental sciences were the primary platforms for publishing soil erosion research in China.Catena,Science of the Total Environment,Transactions of CSAM,and Acta Ecologica Sinica were the most productive journals.Six international collaboration networks were identified in this field.There are collaboration networks in this field.The large cluster is centered on China,connecting some European Union countries.This is followed by a small cluster of commonwealth countries headed by the United Kingdom.The rest are bilateral collaborations between two countries that do not form networks.The major research themes identified were“soil erosion and land degradation”“erosion dynamics and drivers”“soil erosion process and mechanism”and“erosion monitoring technology”.Earlier research was heavily focused on topics such as“GIS”“remote sensing”“Cs-137”“landscape pattern”“vegetation restoration”“simulated rainfall”“loess plateau”and“black soil.”In contrast,recent studies have shifted towards“climate change”“ecosystem services”“soil erodibility”“gully erosion”and“RUSLE”.[Conclusions]This study offers a comprehensive overview of China's soil erosion research,serving as a valuable resource for researchers and policy-makers interested in understanding the knowledge structure and development trends in this field.Additionally,the study highlights emerging research topics and potential areas for future exploration,thereby guiding the direction of subsequent studies in soil erosion.
文摘The effect of functionalized graphene on the growth and development of Vicia faba L.was investigated by analyzing its impact on the composition and diversity of the microbial community in rhizosphere peat soil.Seedlings of V.faba planted in this peat soil were treated with either distilled water(CK)or 25 mg·L^(−1)(G25)of functionalized graphene solution.Results showed that the height and root length of V.faba seedlings in the G25 group were significantly larger than those in CK group.The microbial com-munity was analyzed by amplifying and sequencing the 16S rRNA gene V_(3)-V_(4) region of bacteria and internal transcribed spacer re-gion of fungi in rhizosphere soil using Illumina MiSeq technology.Alpha and beta diversity analysis indicated that functionalized graphene increased the richness and diversity of bacteria and fungi in the V.faba rhizosphere peat soil.The abundances of three ni-trogen cycling-related bacteria,Hydrogenophaga,Sphingomonas and Nitrosomonadaceae,were also altered after treatment with the functionalized graphene.The relative abundance of Basilicum,related to soil phosphorus solubilization,decreased in the fungal com-munity,while the relative abundance of Clonostachys and Dimorphospora,which exhibited strong biological control over numerous fungal plant pathogens,nematodes and insects,increased in the soil after functionalized graphene treatment.Redundancy analysis re-vealed that the potential of hydrogen(pH),organic matter,and total phosphorus contributed the most to the changes in bacterial and fungal community composition in the rhizosphere soil.Overall,our findings suggested that the addition of functionalized graphene altered the relative abundances of nitrogen and phosphorus cycling-related microorganisms in peat soil,promoting changes in the physicochemical properties of the soil and ultimately leading to the improved growth of V.faba plants.
基金Supported by the National Natural Science Fund(41301316,32172072)the Project of Nature Scientific Foundation of Heilongjiang Province(LH2021C025)Open Project of Key Laboratory for Germplasm Innovation and Physiological Ecology of Food Crops in Cold Regions of the Ministry of Education(CXSTOP2021008)。
文摘Long term tillage in mollisol of Northeast China has led to an inhomogeneous distribution of soil organic matter content.Biochar,a carbon material,changes the soil carbon pool and physical-chemical characteristics after adding to the soil.However,the mechanism remains unclear for the relation between the soil organic matter level and biochar amount.So,the soil physical and chemical properties and soybean growth in a two-year pot experiment were detected at three levels of soil organic matter and three biochar additions(0,1%and 10%).The difference was found in two biochar application rates.The 1%biochar addition had no positive effect on the soil chemical properties based the two-year experiment.However,10%biochar application significantly increased the soil water content(8.0%-39.7%),the total porosity(9.7%-21.3%),pH(0.26-0.84 unit),organic matter content(89.0%-261.2%),and the available potassium content(29.0%-109.1%).The biomass of soybean increased by 19.4%-78.1%after biochar addition,yet,the soil bulk density reduced at the range of 12.6%-26.0%by 10%biochar addition.Only the 100-grain weight was correlated to the interaction of biochar and the native soil organic matter.All the indicators showed that the interaction between biochar and soil organic matter level was weak in mollisol.The effects of biochar on the physical-chemical properties relied on its amount.When biochar is applied to the soil,the amount of biochar should be considered rather than the native soil organic matter level.
基金Science and Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G02)National Natural Science Foundation of China(42277353)Chengdu Science and Technology Project(2022-YF05-01162-SN)。
文摘[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.
文摘The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption.
基金Project(202206370130)supported by the China Scholarship CouncilProject(2023ZZTS0034)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.