In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kut...This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.展开更多
By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit c...By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.展开更多
On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion tha...On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.展开更多
This paper discuss stability of the full discrete nonlinear Galerkin method based on the approximation inertial manifold method for some nonlinear evolution equation, for example, some nonlinear reactor equation and N...This paper discuss stability of the full discrete nonlinear Galerkin method based on the approximation inertial manifold method for some nonlinear evolution equation, for example, some nonlinear reactor equation and Navier-Stokes Equation. In the paper we provide some necessary and sufficient conditions of stability.展开更多
The optimal control problem for nonlinear interconnected large-scale dynamic systems is considered. A successive approximation approach for designing the optimal controller is proposed with respect to quadratic perfor...The optimal control problem for nonlinear interconnected large-scale dynamic systems is considered. A successive approximation approach for designing the optimal controller is proposed with respect to quadratic performance indexes. By using the approach, the high order, coupling,nonlinear two-point boundary value (TPBV) problem is transformed into a sequence of linear decoupling TPBV problems. It is proven that the TPBV problem sequence uniformly converges to the optimal control for nonlinear interconnected large-scale systems. A suboptimal control law is obtained by using a finite iterative result of the optimal control sequence.展开更多
In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic ...In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.展开更多
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
文摘This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.
文摘By using the extended F-expansion method, the exact solutions,including periodic wave solutions expressed by Jacobi elliptic functions, for (2+1)-dimensional nonlinear Schrdinger equation are derived. In the limit cases, the solitary wave solutions and the other type of traveling wave solutions for the system are obtained.
基金supported by the Meteorological Special Project of China(GYHY200806005)the National Natural Sciences Foundation of China(40805028,40675039,40575036)the Key Technologies R&D Program of China(2009BAC51B04)
文摘On the basis of the quasi-geostrophic vorticity equation,theoretical research has been down upon the evolution of the amplitude of solitary Rossby waves employing the perturbation method,and come to the conclusion that the evolution of the amplitude satisfies the variable coefficient Korteweg-de Vries(KdV) equation.
文摘This paper discuss stability of the full discrete nonlinear Galerkin method based on the approximation inertial manifold method for some nonlinear evolution equation, for example, some nonlinear reactor equation and Navier-Stokes Equation. In the paper we provide some necessary and sufficient conditions of stability.
基金Supported by National Natural Science Foundation of P. R. China (60074001)the Natural Science Foundation of Shandong Province (Y2000G02)
文摘The optimal control problem for nonlinear interconnected large-scale dynamic systems is considered. A successive approximation approach for designing the optimal controller is proposed with respect to quadratic performance indexes. By using the approach, the high order, coupling,nonlinear two-point boundary value (TPBV) problem is transformed into a sequence of linear decoupling TPBV problems. It is proven that the TPBV problem sequence uniformly converges to the optimal control for nonlinear interconnected large-scale systems. A suboptimal control law is obtained by using a finite iterative result of the optimal control sequence.
基金The project was supported by the National Natural Science Faundation of China
文摘In this paper two classes of equivalence transform methods for solving ordinary differential equations are proposed. One class of method is the equivalence integral transform method for special differential algebraic problems. The advantage of this class of method is such that the amount of work calculating one integration with parameters becomes that of two interpolations, when the system of nonlinear equations is solved on the right hand side function. The other class of method is the equivalence substitution method for avoiding calculating derivative on the right hand side function. In order to avoid calculation derivatives, two equivalence substitution methods are proposed here. The application instances of some special effect of the equivalence substitution methods are given.