In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.F...The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.展开更多
This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncerta...This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.展开更多
In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to...In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
利用实况资料和再分析资料,结合WRF(weather research and forecasting)模式对南通一次极端大风过程进行诊断分析及数值模拟。分析了该个例发生的天气形势背景和系统的水平、垂直结构,探究大风天气成因,并进一步对比不同参数化方案的模...利用实况资料和再分析资料,结合WRF(weather research and forecasting)模式对南通一次极端大风过程进行诊断分析及数值模拟。分析了该个例发生的天气形势背景和系统的水平、垂直结构,探究大风天气成因,并进一步对比不同参数化方案的模拟效果。结果表明:1)大风过程发生在高空深厚冷涡和地面强暖湿低压的环流背景下,上空存在不稳定层结和不稳定能量的累积;雷暴大风在12—13时经历了发展、成熟、消散3个阶段,飑线以碎块型的方式形成。2)3种微物理方案中,MG方案模拟出更大面积的层云、强回波和极端大风,模拟的最大地面阵风为44.47 m·s^(-1)。Lin方案较好地模拟出飑线的演变过程和垂直结构特征,模拟的最强上升气流达23.55 m·s^(-1),下沉气流达-13.21 m·s^(-1)。3)水平方向上,雷暴大风附近存在成熟的飑线地面中尺度系统,地面存在深厚冷池出流、变压梯度大值区和冷锋过境,它们共同促进了地面大风的生成。4)垂直方向上,对流单体上空高层辐散、低层辐合,存在强上升气流和水汽潜热释放;后侧的干空气蒸发和粒子的拖曳加强下沉运动,配合地面冷池出流和辐散气流,造成了极端大风天气。展开更多
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
基金the French Defense Innovation Agency (AID)the French Procurement Agency for Armament (DGA)ONERA's scientific direction for funding and supporting the present work
文摘The aim of this paper is to simulate and study the early moments of the reactive ballistics of a large caliber projectile fired from a gun,combining 0D and 2D axisymmetric Computational Fluid Dynamics(CFD)approaches.First,the methodology is introduced with the development of an interior ballistics(IB)lumped parameter code(LPC),integrating an original image processing method for calculating the specific regression of propellant grains that compose the gun propellant.The ONERA CFD code CEDRE,equipped with a Dynamic Mesh Technique(DMT),is then used in conjunction with the developed LPC to build a dedicated methodology to calculate IB.First results obtained on the AGARD gun and 40 mm gun test cases are in a good agreement with the existing literature.CEDRE is also used to calculate inter-mediate ballistics(first milliseconds of free flight of the projectile)with a multispecies and reactive approach either starting from the gun muzzle plane or directly following IB.In the latter case,an inverse problem involving a Latin hypercube sampling method is used to find a gun propellant configuration that allows the projectile to reach a given exit velocity and base pressure when IB ends.The methodology developed in this work makes it possible to study the flame front of the intermediate flash and depressurization that occurs in a base bleed(BB)channel at the gun muzzle.Average pressure variations in the BB channel during depressurization are in good agreement with literature.
基金partially supported by the Natural Science Foundation of China (Grant Nos.62103052,52272358)partially supported by the Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘This paper investigates the adaptive trajectory tracking control problem and the unknown parameter identification problem of a class of rotor-missiles with parametric system uncertainties.First,considering the uncertainty of structural and aerodynamic parameters,the six-degree-of-freedom(6Do F) nonlinear equations describing the position and attitude dynamics of the rotor-missile are established,respectively,in the inertial and body-fixed reference frames.Next,a hierarchical adaptive trajectory tracking controller that can guarantee closed-loop stability is proposed according to the cascade characteristics of the 6Do F dynamics.Then,a memory-augmented update rule of unknown parameters is proposed by integrating all historical data of the regression matrix.As long as the finitely excited condition is satisfied,the precise identification of unknown parameters can be achieved.Finally,the validity of the proposed trajectory tracking controller and the parameter identification method is proved through Lyapunov stability theory and numerical simulations.
基金supported by the National Natural Science Foundation of China(6193101562071335)+1 种基金the Technological Innovation Project of Hubei Province of China(2019AAA061)the Natural Science F oundation of Hubei Province of China(2021CFA002)。
文摘In this paper,we study the accuracy of delay-Doppler parameter estimation of targets in a passive radar using orthogonal frequency division multiplexing(OFDM)signal.A coarse-fine joint estimation method is proposed to achieve better estimation accuracy of target parameters without excessive computational burden.Firstly,the modulation symbol domain(MSD)method is used to roughly estimate the delay and Doppler of targets.Then,to obtain high-precision Doppler estimation,the atomic norm(AN)based on the multiple measurement vectors(MMV)model(MMV-AN)is used to manifest the signal sparsity in the continuous Doppler domain.At the same time,a reference signal compensation(RSC)method is presented to obtain highprecision delay estimation.Simulation results based on the OFDM signal show that the coarse-fine joint estimation method based on AN-RSC can obtain a more accurate estimation of target parameters compared with other algorithms.In addition,the proposed method also possesses computational advantages compared with the joint parameter estimation.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.
文摘利用实况资料和再分析资料,结合WRF(weather research and forecasting)模式对南通一次极端大风过程进行诊断分析及数值模拟。分析了该个例发生的天气形势背景和系统的水平、垂直结构,探究大风天气成因,并进一步对比不同参数化方案的模拟效果。结果表明:1)大风过程发生在高空深厚冷涡和地面强暖湿低压的环流背景下,上空存在不稳定层结和不稳定能量的累积;雷暴大风在12—13时经历了发展、成熟、消散3个阶段,飑线以碎块型的方式形成。2)3种微物理方案中,MG方案模拟出更大面积的层云、强回波和极端大风,模拟的最大地面阵风为44.47 m·s^(-1)。Lin方案较好地模拟出飑线的演变过程和垂直结构特征,模拟的最强上升气流达23.55 m·s^(-1),下沉气流达-13.21 m·s^(-1)。3)水平方向上,雷暴大风附近存在成熟的飑线地面中尺度系统,地面存在深厚冷池出流、变压梯度大值区和冷锋过境,它们共同促进了地面大风的生成。4)垂直方向上,对流单体上空高层辐散、低层辐合,存在强上升气流和水汽潜热释放;后侧的干空气蒸发和粒子的拖曳加强下沉运动,配合地面冷池出流和辐散气流,造成了极端大风天气。