期刊文献+
共找到34,047篇文章
< 1 2 250 >
每页显示 20 50 100
A comprehensive study of the mechanical properties of rock-like materials for inelastic deformation model establishment
1
作者 TRIMONOVA Mariia STEFANOV Yuri +1 位作者 DUBINYA Nikita BAKEEV Rustam 《地质力学学报》 北大核心 2025年第3期475-490,共16页
[Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study... [Objective]The work is devoted to the study of irreversible deformation of artificial samples subjected to a set of standard experiments,with an aim to study their mechanical properties.The principal idea of the study is related to the preparation of an artificial material with an established constitutive behavior model.The existence of such a well-described material provides future opportunities to conduct controllable experiments on various mechanical processes in rock-like material for further development and validation of theoretical models used in rock mechanics.[Methods]A set of artificial samples was prepared for careful assessment through a number of loading tests.Experimental work was carried out to determine the rheological properties under conditions of triaxial compression tests and uniaxial tension.Triaxial loading tests are completed for 9 samples with varying radial stress levels(0-5 MPa).The samples are loaded up to the yield point with control of radial and volumetric strain.The experimental results,which contain the obtained interrelationships between axial and radial stresses and strains,are analyzed using the Drucker-Prager yield surface.Material hardening is taken into account through the non-associated plastic flow law with the cap model.Numerical modeling of sample loading is performed through the finite difference method.Mathematical model parameters are adjusted to minimize the discrepancy between numerical modeling results and experimental data.The design of a series of experimental studies necessary to determine all the parameters of the model has been studied.[Results]It is shown that the formulated mathematical model allows to reliably reproduce the inelastic behavior of the studied material,and it can be used to solve a set of applied problems in continuum mechanics,the problem of numerical simulation of hydraulic fracture growth in an elastoplastic medium in particular.It was found that for the entire range of applied lateral loads(0-5 MPa),the elastic limit varied from 2 to 4 MPa,after which the material began to behave plastically.It was also determined that at lateral loads≥3 MPa,compaction began to appear in the material beyond the yield point.Judging by the dependence of volumetric strains under a lateral load equal to 1.4 MPa,compaction should begin to appear even at lateral loads lower than 3 MPa.[Conclusion]Taking the plastic behavior of the material into account is necessary when moving on to modeling the hydraulic fracturing process in such a material,and the resultant plasticity parameters for the model material can be used for numerical modeling of elastoplastic deformation of the rock under consideration,including processes such as hydraulic fracture growth in a poroelastoplastic medium.[Significance]The suggested procedure to interpret results of experimental studies can be used for further numerical modeling of mechanical processes in rock masses with inelastic strain accumulation.This opportunity can increase the reliability of geomechanical models used for the optimization of hydrocarbon fields development. 展开更多
关键词 plastic deformation internal friction shear strength triaxial compression “Brazilian”test loading diagrams
在线阅读 下载PDF
Deformations and extensions of modified λ-differential Lie-Yamaguti algebras
2
作者 TENG Wen PAN Yuewei 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第4期115-127,共13页
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t... The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group. 展开更多
关键词 Lie-Yamaguti algebra modifiedλ-differential operator representation and cohomology one-parameter formal deformation Abelian extension
在线阅读 下载PDF
Effect of hot deformation on grain structure and quench sensitivity in 7085 aluminum alloy
3
作者 LI Cheng-bo ZHAO Cai +2 位作者 CAO Pu-li ZHU Dai-bo XIAO Bo 《Journal of Central South University》 2025年第4期1223-1236,共14页
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti... The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains. 展开更多
关键词 hot deformation 7085 aluminum alloy MICROSTRUCTURE heterogeneous precipitation quench sensitivity
在线阅读 下载PDF
Deformation mechanism of a novel pipe-roof composite slab:An experimental and theoretical investigation
4
作者 LU Bo JIA Peng-jiao +3 位作者 ZHAO Wen NI Peng-peng BAI Qian CHENG Cheng 《Journal of Central South University》 2025年第3期1044-1059,共16页
Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space developmen... Steel tube slab (STS) structure, a novel pipe-roof structure, of which steel tubes are connected with flange plates, bolts and concrete, is an increasingly popular supporting structure for underground space development. Whilst the load-bearing of pipe-roof structures has been the subject of much research, uncertainties of deformation mechanism and the derivation of reliable calculation methods remain a challenge. For efficient design and wider deployment, this paper presents a bidirectional bending test to investigate the bending stiffnesses, load capacities and deformation mechanisms. The results show that the STS specimens exhibit good ductility and experience bending failure, and their deformation curves follow a half-sine wave upon loading. On this basis, the development of an STS composite slab deformation prediction model is proposed, along with the estimation for its bending stiffness. Theoretical predictions are shown to be in good agreement with the experimental measurements, with a maximum error of less than 15%. The outcomes of this investigation can provide references for the design and application of STS structures. 展开更多
关键词 steel tube slab deformation characteristics bending stiffness theoretical model
在线阅读 下载PDF
Hot compression deformation behavior and microstructural characteristics of high-purity silver
5
作者 YAO Ying-jun WEN Jing +3 位作者 YAN Shuai-jiang WANG Ri-chu PENG Xiang CAI Zhi-yong 《Journal of Central South University》 2025年第6期2051-2070,共20页
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material... High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃. 展开更多
关键词 high-purity silver deformation behavior dynamic recovery dynamic recrystallization processing map microstructural evolution
在线阅读 下载PDF
Anisotropic strength and deformation of irregular columnar jointed rock masses under triaxial stress
6
作者 QUE Xiang-cheng ZHU Zhen-de +1 位作者 NIU Zi-hao ZHU Shu 《Journal of Central South University》 2025年第2期643-655,共13页
The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is c... The special columnar jointed structure endows rocks with significant anisotropy,accurately grasping the strength and deformation properties of a columnar jointed rock mass(CJRM)under complex geological conditions is crucial for related engineering safety.Combined with the irregular jointed networks observed in the field,artificial irregular CJRM(ICJRM)samples with various inclination angles were prepared for triaxial tests.The results showed that the increase in confining pressure can enhance the ability of the ICJRM to resist deformation and failure,and reduce the deformation and strength anisotropic degrees.Considering the field stress situation,the engineering parts with an inclination angle of 30°−45°need to be taken seriously.Four typical failure modes were identified,and the sample with an inclination angle of 15°showed the same failure behavior as the field CJRM.Traditional and improved joint factor methods were used to establish empirical relationships for predicting the strength and deformation of CJRM under triaxial stress.Since the improved joint factor method can reflect the unique structure of CJRM,the predictive ability of the empirical relationship based on the improved method is better than that based on the traditional joint factor method. 展开更多
关键词 irregular columnar jointed rock mass triaxial stress STRENGTH deformation anisotropic mechanical property empirical relation
在线阅读 下载PDF
A new theory for determining large deformation area of roof at intersection and verification analysis
7
作者 WU Yi-yi GAO Yu-bing +2 位作者 MA Xiang ZHANG Xing-xing HE Man-chao 《Journal of Central South University》 2025年第2期656-677,共22页
The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying t... The intersection is a widely used traffic line structure from the shallow tunnel to the deep roadway,and determining the subsidence hidden danger area of the roof is the key to its stability control.However,applying traditional maximum equivalent span beam(MESB)theory to determine deformation range,peak point,and angle influence poses a challenge.Considering the overall structure of the intersection roof,the maximum equivalent triangular plate(METP)theory is proposed,and its geometric parameter calculation formula and deflection calculation formula are obtained.The application of the two theories in 18 models with different intersection angles,roadway types,and surrounding rock lithology is verified by numerical analysis.The results show that:1)The METP structure of the intersection roof established by the simulation results of each model successfully determined the location of the roof’s high displacement zone;2)The area comparison method of the METP theory can be reasonably explained:①The roof subsidence of the intersection decreases with the increase of the intersection angle;②The roof subsidence at the intersection of different roadway types has a rectangular type>arch type>circular type;③The roof subsidence of the intersection with weak surrounding rock is significantly larger than that of the intersection with hard surrounding rock.According to the application results of the two theories,the four advantages of the METP theory are compared and clarified in the basic assumptions,mechanical models,main viewpoints,and mechanism analysis.The large deformation inducement of the intersection roof is then explored.The J 2 peak area of the roof drives the large deformation of the area,the peak point of which is consistent with the center of gravity position of the METP.Furthermore,the change in the range of this peak is consistent with the change law of the METP’s area.Hence,this theory clarifies the large deformation area of the intersection roof,which provides a clear guiding basis for its initial support design,mid-term monitoring,and late local reinforcement. 展开更多
关键词 roadway intersection roof deformation equivalent span theory triangular plate structure numerical analysis stress partial tensor
在线阅读 下载PDF
Deformation patterns of steel targets against long rod penetration
8
作者 Chengxin Du Peng Wang +4 位作者 Bingnan Xing Feng Zhou Wenzheng Lv Zhonghua Du Guangfa Gao 《Defence Technology(防务技术)》 2025年第8期272-287,共16页
An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of stren... An experimental and finite element simulation investigation are conducted to study the deformation patterns of steel targets during the penetration process of tungsten alloy long rods,as well as the influence of strength of the target on the deformation patterns.The experimental results revealed slight mass loss in the first layer of the steel target during the transient entrance phase,with an extremely negligible loss in target mass during the quasi-steady penetration phase.The results of macro-analysis,micro-analysis and simulation show that the eroded target material migrated towards the periphery of the crater,causing an increase in the target's thickness,remained within the target,instead of flowing out of the crater.Therefore,the process of long rods penetrating the metal target is considered as a process of backward extrusion.By combining the backward extrusion theory with energy conservation,a penetration depth model for long rods penetrating a metal target,taking into account both the diameter of the crater and the friction coefficient between the rod and the target,has been established.Although the model is not yet perfect,it innovatively applies the principles of solid mechanics to the study of long rod penetration.Additionally,it takes into account the friction coefficient between the rod and the target during the penetration process.Therefore,this model provides a new research direction for future studies on long rod penetration. 展开更多
关键词 Long-rod penetration Mass loss of target deformation patterns of targets Penetration depth model Backward extrusion theory
在线阅读 下载PDF
Enhancement of damage tolerance in Ti-6554 alloy through twinning and hetero-deformation induced strengthening synergy
9
作者 FU Ming-zhu LUO Wei +7 位作者 LI Si-yun YAO Wen-xi PENG Shu-xian LIU Yi-kui LIU Ji-xiong ZHANG Ping-hui LIU Hui-qun PAN Su-ping 《Journal of Central South University》 2025年第3期744-759,共16页
Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat trea... Heterogeneous structure exhibits superiority in improving mechanical properties,whereas their effects on fatigue damage properties have rarely been studied.In this work,we employed a high-throughput gradient heat treatment method(757−857℃)to rapidly acquire the solution microstructure of the Ti-6554 alloy with different recrystallization degrees(0%,40%and 100%),followed by the same aging treatment.The results showed that theβ-hetero structure exhibited a yield strength(σ_(YS))of 1403 MPa,an increase of 6.7%,and a remarkable improvement in uniform elongation(UE)of 109.7%,reaching 6.5%,compared to the homogeneous structure.Interestingly,introducing a heterogeneous structure not only overcame the traditional trade-off between strength and ductility but also enhanced fatigue crack propagation(FCP)performance.During FCP process,β-hetero structure,through hetero-deformation induced(HDI)strengthening effects,promoted the accumulation of geometric necessary dislocations(GNDs)within coarseα_(S) phase,enabling faster attainment of the critical shear stress of twinning and increasing twinning density.This facilitated stress relief,improved plastic deformation in the crack tip zone,and increased the critical fast fracture threshold from 30.4 to 36.0 MPa·m^(1/2)showing an enlarged steady state propagation region.This study provides valuable insights on tailoring fatigue damage tolerance through heterogeneous structure for titanium alloys. 展开更多
关键词 Ti-6554 alloy fatigue crack propagation hetero-deformation induced(HDI)strengthening deformation induced nano-scale twins
在线阅读 下载PDF
Case study on the mechanics of NPR anchor cable compensation for large deformation tunnel in soft rock in the Transverse Mountain area,China 被引量:1
10
作者 LI Yong ZHENG Jing +3 位作者 HUO Shu-sen WANG Feng-nian HE Man-chao TAO Zhi-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期2054-2069,共16页
A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri... A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas. 展开更多
关键词 soft rock large deformation NPR anchor cable physical model numerical simulation compensation mechanics
在线阅读 下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
11
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-Zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance MICROSTRUCTURE
在线阅读 下载PDF
基于Deform的弯链板U弯成形分析及模具参数优化
12
作者 汪永明 孙永文 连润柱 《塑性工程学报》 北大核心 2025年第6期79-86,共8页
针对弯链板在U弯成形过程中产生的向外弯曲现象,基于Deform软件在其U弯凹模上分别建立了无预弯块和有预弯块的2组U弯成形有限元仿真模型,仿真结果表明:有预弯块的U弯凹模对工件的向外弯曲变形有着很大的改善作用。建立了5组不同预弯块... 针对弯链板在U弯成形过程中产生的向外弯曲现象,基于Deform软件在其U弯凹模上分别建立了无预弯块和有预弯块的2组U弯成形有限元仿真模型,仿真结果表明:有预弯块的U弯凹模对工件的向外弯曲变形有着很大的改善作用。建立了5组不同预弯块间距的U弯成形有限元仿真模型,分析不同预弯块间距对工件的台阶面间距和平行度的影响,根据仿真结果对比:当预弯块间距为75 mm时,U弯成形件的成形效果最佳,此时其台阶面间距为38.36 mm,台阶面向内弯曲夹角为0.1°。取预弯块间距为最佳值75 mm时,分别研究了不同的U弯间隙与凹模圆角半径对工件U弯成形效果的影响,得出其最佳U弯间隙为5.15 mm,最佳凹模圆角半径为10 mm。基于优化后的模具参数进行了U弯成形实验,依据实验结果,U弯成形件的窄端面间距为27.41~27.47 mm,台阶面间距为38.45~38.61 mm,台阶面夹角为-0.14°~0.27°,实验结果满足U弯成形的工艺要求,有效解决了弯链板在U弯成形过程中的向外弯曲现象。 展开更多
关键词 弯链板 U弯成形 deform仿真 模具改进 参数优化
在线阅读 下载PDF
Improved spatio-temporal alignment measurement method for hull deformation
13
作者 XU Dongsheng YU Yuanjin +1 位作者 ZHANG Xiaoli PENG Xiafu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期485-494,共10页
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar... In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist. 展开更多
关键词 inertial measurement spatio-temporal alignment hull deformation
在线阅读 下载PDF
Plastic deformation behavior of a Cu-10Ta alloy under strong impact loading
14
作者 Ping Song Jianghai Liu +1 位作者 Wenbin Li Yiming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期368-382,共15页
In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volu... In this work,a Cu-10Ta alloy with a copper to tantalum mass ratio of 9:1 is prepared using powder metallurgy technology.Physical properties of the alloy,including density,microstructure,melting point,and constant-volume specific heat,are tested.Via the split Hopkinson pressure bar(SHPB)and flyerplate impact experiments,the relationship between equivalent stress and equivalent plastic strain of the material is studied at temperatures of 298-823 K and under strain rates of 1×10^(-3)-5.2×10^(3)s^(-1),and the Hugoniot relationship at impact pressures of 1.46-17.25 GPa and impact velocities of 108-942 m/s is obtained.Evolution of the Cu-10Ta microstructure that occurs during high-strain-rate impact is analyzed.Results indicate that the Cu-10Ta alloy possesses good thermal stability,and at ambient temperatures of up to 50%its melting point,stress softening of less than 15%of the initial strength is observed.A modified J-C constitutive model is employed to accurately predict the variation of yield strength with strain rate.Under strong impact,the copper phase is identified as the primary source of plastic deformation in the Cu-10Ta alloy,while significant deformation of the high-strength tantalum particles is less pronounced.Furthermore,the longitudinal wave speed D is found to correlate linearly with the particle velocity u upon strong impact.Analysis reveals that the sound speed and spallation strength of the alloy increase with increasing impact pressure. 展开更多
关键词 Cu-10Ta SHPB Plastic deformation Flyer impact Hugoniot relationship
在线阅读 下载PDF
Deformation mechanism and roof pre-splitting control technology of gob-side entry in thick hard main roof full-mechanized longwall caving panel
15
作者 WANG Hao-sen HE Man-chao +6 位作者 WANG Jiong YANG Gang MAZi-min MING Can WANG Rui FENG Zeng-chao ZHANG Wen-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3206-3224,共19页
This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive appro... This paper explores the deformation mechanism and control technology of roof pre-splitting for gob-side entries in hard roof full-mechanized longwall caving panel(LTCC).The investigation utilizes a comprehensive approach that integrates field monitoring,theoretical analysis,and numerical simulation.Theoretical analysis has illuminated the influence of the length of the lateral cantilever beam of the main roof(LCBM)above the roadway on the stability of the gob-side entry behind the panel.Numerical simulations have further revealed that the longer LCBM results in heightened vertical stress within the coal pillar,developed cracks around the roadway,and more pronounced damage to the roadway.Moreover,numerical simulations also demonstrate the potential of roof pre-splitting technology in optimizing the fracture position of the hard roof.This technology significantly reduces the length of the LCBM,thereby alleviating stress concentration in the coal pillars and integrated coal rib while minimizing the destruction of the gob-side entry.Therefore,this manuscript first proposes the use of roof pre-splitting technology to control roadway deformation,and automatically retain the entry within a hard roof LTCC panel.Field implementation has demonstrated that the proposed automatically retained entry by roof pre-splitting technology effectively reduces gob-side entry deformation and achieves automatically retained entry. 展开更多
关键词 deformation mechanism hard roof gob-side entry cantilever beam roof pre-spliting
在线阅读 下载PDF
Effect of annealing temperature on microstructure and mechanical properties of Mg-Zn-Zr-Nd alloy with large final rolling deformation
16
作者 ZHANG Jin-hai NIE Kai-bo +2 位作者 ZHANG Jin-hua DENG Kun-kun LIU Zhi-long 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1774-1789,共16页
In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was inve... In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity. 展开更多
关键词 Mg-Zn-Zr-Nd alloy large final rolling deformation annealing temperatures microstructures mechanical properties
在线阅读 下载PDF
Intelligent prediction model of tunnelling-induced building deformation based on genetic programming and its application
17
作者 XU Jing-min WANG Chen-cheng +3 位作者 CHENG Zhi-liang XU Tao ZHANG Ding-wen LI Zi-li 《Journal of Central South University》 CSCD 2024年第11期3885-3899,共15页
This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtai... This paper aims to explore the ability of genetic programming(GP)to achieve the intelligent prediction of tunnelling-induced building deformation considering the multifactor impact.A total of 1099 groups of data obtained from 22 geotechnical centrifuge tests are used for model development and analysis using GP.Tunnel volume loss,building eccentricity,soil density,building transverse width,building shear stiffness and building load are selected as the inputs,and shear distortion is selected as the output.Results suggest that the proposed intelligent prediction model is capable of providing a reasonable and accurate prediction of framed building shear distortion due to tunnel construction with realistic conditions,highlighting the important roles of shear stiffness of framed buildings and the pressure beneath the foundation on structural deformation.It has been proven that the proposed model is efficient and feasible to analyze relevant engineering problems by parametric analysis and comparative analysis.The findings demonstrate the great potential of GP approaches in predicting building distortion caused by tunnelling.The proposed equation can be used for the quick and intelligent prediction of tunnelling induced building deformation,providing valuable guidance for the practical design and risk assessment of urban tunnel construction projects. 展开更多
关键词 building deformation genetic programming tunnel construction modification factor
在线阅读 下载PDF
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
18
作者 WANG Fan WANG Xitao +1 位作者 XU Shiguang HE Jinshan 《材料导报》 EI CAS CSCD 北大核心 2024年第17期165-171,共7页
The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformati... The hot compression tests of 7Mo super austenitic stainless(SASS)were conducted to obtain flow curves at the temperature of 1000-1200℃and strain rate of 0.001 s^(-1)to 1 s^(-1).To predict the non-linear hot deformation behaviors of the steel,back propagation-artificial neural network(BP-ANN)with 16×8×8 hidden layer neurons was proposed.The predictability of the ANN model is evaluated according to the distribution of mean absolute error(MAE)and relative error.The relative error of 85%data for the BP-ANN model is among±5%while only 42.5%data predicted by the Arrhenius constitutive equation is in this range.Especially,at high strain rate and low temperature,the MAE of the ANN model is 2.49%,which has decreases for 18.78%,compared with conventional Arrhenius constitutive equation. 展开更多
关键词 7Mo super austenitic stainless steel hot deformation behavior flow stress BP-ANN Arrhenius constitutive equation
在线阅读 下载PDF
基于Deform与nCode联合仿真的新淬火成形工艺参数对L型材疲劳寿命的影响研究
19
作者 尚晓峰 吕文政 王志坚 《热加工工艺》 北大核心 2025年第1期132-136,共5页
以铝合金L型材的新淬火成形工艺为研究对象,应用Deform软件还原新淬火成形工艺过程,并得到了不同工艺参数下L型材的残余应力分布;将残余应力分布赋予到nCode软件中,并基于名义应力法对不同工艺参数下L型材的疲劳寿命进行预测,确定了最... 以铝合金L型材的新淬火成形工艺为研究对象,应用Deform软件还原新淬火成形工艺过程,并得到了不同工艺参数下L型材的残余应力分布;将残余应力分布赋予到nCode软件中,并基于名义应力法对不同工艺参数下L型材的疲劳寿命进行预测,确定了最高抗疲劳性能下L型材的新淬火成形工艺参数:470℃固溶处理并保温40 min,20℃水温淬火,冲压速度为60 mm/s,一级时效为170℃/10 min,二级时效为120℃/20 min,并通过疲劳试验验证预测的准确性,为实际生产提供重要指导。 展开更多
关键词 deform nCode 淬火 残余应力 疲劳寿命
在线阅读 下载PDF
基于DEFORM数值模拟的15Cr14Co12Mo5Ni钢齿轮锻造方案优化
20
作者 施文鹏 黎恒逸 +2 位作者 张元东 舒勇 王同超 《精密成形工程》 北大核心 2025年第4期78-86,共9页
目的解决15Cr14Co12Mo5Ni钢齿轮锻件易出现粗晶和晶粒度不均匀的问题。方法采用DEFORM数值模拟软件分析15Cr14Co12Mo5Ni钢齿轮成形过程,基于分析结果优化锻件设计方案和锻造工艺方案。结果优化了锻件小端头厚度、中心凹坑尺寸及锻造工... 目的解决15Cr14Co12Mo5Ni钢齿轮锻件易出现粗晶和晶粒度不均匀的问题。方法采用DEFORM数值模拟软件分析15Cr14Co12Mo5Ni钢齿轮成形过程,基于分析结果优化锻件设计方案和锻造工艺方案。结果优化了锻件小端头厚度、中心凹坑尺寸及锻造工艺方案中制坯镦粗高度,使模锻成形过程中齿轮锻件各部位的变形量更加均匀,保证了齿轮小端头难变形区域的变形量≥40%,达到了细化晶粒的目的。结论采用优化后的工艺进行零件试制,结果与DEFORM数值模拟结果相吻合。 展开更多
关键词 15Cr14Co12Mo5Ni钢 deform数值模拟 锻造方案 变形量 晶粒度
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部