During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms...During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity.展开更多
To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(...To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(4-methoxy)phenylpyrrolidine-C_(60) and four different of bis(N-(4-methoxy)phenylpyrrolidine)-C_(60) compounds through Prato reaction.Their structures were characterized by UVevis,^(1)H NMR,^(13)C NMR,high-resolution mass spectroscopy,and single-crystal X-ray diffraction.Their stabilization effect to NC/NG were investigated using differential scanning calorimetry,methyl violet,vacuum stabilization effect,weight loss,and accelerating rate calorimeter tests.The results indicated these compounds had excellent stabilization effect to NC/NG.The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C_(60).Moreover,the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different,and its stabilization effect to NC is also different.The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows:e-edge>trans-2>cis-2>trans-3.Electron paramagnetic resonance(EPR)and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG.The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide,and their ability is better than that of the monoadduct and C_(60),which is consistent with the results of stabilization effect performance test.展开更多
基金funded by Zhijian Laboratory Open Fund,Rocket Force University of Engineering(Grant No.2023-ZJSYS-KF01-03).
文摘During the storage of composite propellants, the migration of plasticizers and other unbonded additives at the interfaces of liner adhesives has garnered significant attention in understanding liner failure mechanisms, aging processes, and safety performance. However, there is currently no non-destructive and quantitative detection method for migration of plasticizers in propellant liner. In this study, we developed a HTPB sensing liner by incorporating conductive fillers-namely carbon black(CB), carbon nanotubes(CNTs), and graphene nanoplatelets(GNP)-into the HTPB matrix. The synergistic interaction between CNTs and GNP facilitates the formation of a tunneling conductive network that imparts electrical conductivity to the HTPB liner. To elucidate the functional relationship between conductivity and nitroglycerin(NG) migration, we applied the HTPB sensing liner onto double base propellant surfaces and measured both the conductivity of the sensing layer and NG migration during a 71°C accelerated aging experiment. The results shows that when CNTs/GNP content reaches 3wt%, there is an exponential correlation between conductivity and NG migration with a fitting degree of 0.9652;the average response sensitivity of ΔR/R0 relative to NG migration is calculated as 41.69, with an average deviation of merely5.67% between NG migrations derived from conductivity fittings compared to those obtained via TGA testing results. Overall, this sensing liner exhibits excellent capabilities for detecting NG migration nondestructively and quantitatively while offering a novel approach for assessing interfacial component migrations as well as debonding defects in propellants-a promising avenue for future self-monitoring strategies regarding propellant integrity.
基金This work was supported by National Natural Science Foundation of China(51972278)Outstanding Youth Science and Technology Talents Program of Sichuan(no.19JCQN0085)Open Project of State Key Laboratory of Environment-friendly Energy Materials,Southwest University of Science and Technology(No.19fksy04).
文摘To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose(NC)/nitroglycerine(NG),we synthesized N-(4-methoxy)phenylpyrrolidine-C_(60) and four different of bis(N-(4-methoxy)phenylpyrrolidine)-C_(60) compounds through Prato reaction.Their structures were characterized by UVevis,^(1)H NMR,^(13)C NMR,high-resolution mass spectroscopy,and single-crystal X-ray diffraction.Their stabilization effect to NC/NG were investigated using differential scanning calorimetry,methyl violet,vacuum stabilization effect,weight loss,and accelerating rate calorimeter tests.The results indicated these compounds had excellent stabilization effect to NC/NG.The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C_(60).Moreover,the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different,and its stabilization effect to NC is also different.The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows:e-edge>trans-2>cis-2>trans-3.Electron paramagnetic resonance(EPR)and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG.The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide,and their ability is better than that of the monoadduct and C_(60),which is consistent with the results of stabilization effect performance test.