The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau...The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods.展开更多
Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, networ...Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.展开更多
The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of slid...The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized di- rect adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local informa- tion. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.展开更多
Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combin...Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combinations of controllable parameters(microhardness and clad thickness).The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained.However,an artificial neural network(ANN)identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values.The micro-hardness of cladded layer is found to be6.22 times(HV_(0.5)752)the SS304 hardness(HV_(0.5)121).The presence of nitride ceramics results in a higher micro hardness.The cladded surface is free from cracks and pores.The average clad thickness is found to be around 0.6 mm.展开更多
A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobil...A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.展开更多
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir...Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.展开更多
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval...It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.展开更多
In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained f...In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.展开更多
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a...In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.展开更多
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch...The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.展开更多
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito...A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.展开更多
文摘The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods.
基金Projects(70373017 70572090) supported by the National Natural Science Foundation of China
文摘Transmission network planning (TNP) is a large-scale, complex, with more non-linear discrete variables and the multi-objective constrained optimization problem. In the optimization process, the line investment, network reliability and the network loss are the main objective of transmission network planning. Combined with set pair analysis (SPA), particle swarm optimization (PSO), neural network (NN), a hybrid particle swarm optimization model was established with neural network and set pair analysis for transmission network planning (HPNS). Firstly, the contact degree of set pair analysis was introduced, the traditional goal set was converted into the collection of the three indicators including the identity degree, difference agree and contrary degree. On this bases, using shi(H), the three objective optimization problem was converted into single objective optimization problem. Secondly, using the fast and efficient search capabilities of PSO, the transmission network planning model based on set pair analysis was optimized. In the process of optimization, by improving the BP neural network constantly training so that the value of the fitness function of PSO becomes smaller in order to obtain the optimization program fitting the three objectives better. Finally, compared HPNS with PSO algorithm and the classic genetic algorithm, HPNS increased about 23% efficiency than THA, raised about 3.7% than PSO and improved about 2.96% than GA.
基金This project was supported by the National Natural Science Foundation (60074013 &10371106)the Natural ScienceFoundation of Education Bureau of Jiangsu (KK0310067) the Foundation of Information Science Subject Group of YangzhouUniversity (ISG030606)
文摘The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized di- rect adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local informa- tion. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach.
文摘Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser.The experiments are performed on SS304,as per the Taguchi orthogonal array(L^(16))by different combinations of controllable parameters(microhardness and clad thickness).The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained.However,an artificial neural network(ANN)identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values.The micro-hardness of cladded layer is found to be6.22 times(HV_(0.5)752)the SS304 hardness(HV_(0.5)121).The presence of nitride ceramics results in a higher micro hardness.The cladded surface is free from cracks and pores.The average clad thickness is found to be around 0.6 mm.
文摘A numerical study of the crushing of thin-walled circular aluminum tubes has been carried out to investigate the crashworthiness behaviors under axial impact loading. These kinds of tubes are usually used in automobile and train structures to absorb the impact energy. Previous researches show that thin-walled circular tube has the highest energy absorption under axial impact amongst different structures. In this work, the crushing between two rigid flat plates and the tube rupture by 4 and 6 blades cutting tools is modeled with the help of ductile failure criterion using the numerical method. The tube material is aluminum EN AW-7108 T6 and its length and diameter are 300 mm and 50 ram, respectively. Using the artificial neural network (ANN), the most important surfaces of energy absorption parameters, including the maximum displacement of the striker, the maximum axial force, the specific energy absorption and the crushing force efficiency in terms of impact velocity and tube thickness are obtained and compared to each other. The analyses show that the tube rupture by the 6 blades cutting tool has more energy absorption in comparison with others. Furthermore, the results demonstrate that tube cutting with the help of multi-blades cutting tools is more stable, controllable and predictable than tube folding.
文摘Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed.
基金supported by the National Natural Science Foundation of China (12072365)the Natural Science Foundation of Hunan Province of China (2020JJ4657)。
文摘It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model.
基金Supported by the National Natural Science Foundation of China(11971458,11471310)。
文摘In this paper,we propose a neural network approach to learn the parameters of a class of stochastic Lotka-Volterra systems.Approximations of the mean and covariance matrix of the observational variables are obtained from the Euler-Maruyama discretization of the underlying stochastic differential equations(SDEs),based on which the loss function is built.The stochastic gradient descent method is applied in the neural network training.Numerical experiments demonstrate the effectiveness of our method.
文摘In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application.
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the National Key Scientific Instrument and Equipment Development Project(61827801).
文摘The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.
基金funded by National Natural Science Foundation of China(Grant No. 51805146)the Fundamental Research Funds for the Central Universities (Grant No. B200202221)+1 种基金Jiangsu Key R&D Program (Grant Nos. BE2018004-1, BE2018004)College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 2020102941513)。
文摘A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.