Nature gas is not only an increasing important role in energy and chemicals supplies in 21st century but also the second most important of the anthropogenic greenhouse gases. This paper reviewed the plasma technology ...Nature gas is not only an increasing important role in energy and chemicals supplies in 21st century but also the second most important of the anthropogenic greenhouse gases. This paper reviewed the plasma technology application in natural gas chemical engineering, pointed out the problem at present and forecasted plasma concerted catalysis technology will facilitate the nature gas directly conversion into more valuable chemicals supplies economically in short after time.展开更多
The characteristics and application of the in-situ remediation technology of groundwater,including air sparing,electro kinetic remediation,in-situ chemical oxidation,in-situ groundwater bioremediation and permeable re...The characteristics and application of the in-situ remediation technology of groundwater,including air sparing,electro kinetic remediation,in-situ chemical oxidation,in-situ groundwater bioremediation and permeable reactive barriers,were compared and evaluated.The results show that over 90%of展开更多
基金Supported by the National Natural Science Foundation of China
文摘Nature gas is not only an increasing important role in energy and chemicals supplies in 21st century but also the second most important of the anthropogenic greenhouse gases. This paper reviewed the plasma technology application in natural gas chemical engineering, pointed out the problem at present and forecasted plasma concerted catalysis technology will facilitate the nature gas directly conversion into more valuable chemicals supplies economically in short after time.
文摘The characteristics and application of the in-situ remediation technology of groundwater,including air sparing,electro kinetic remediation,in-situ chemical oxidation,in-situ groundwater bioremediation and permeable reactive barriers,were compared and evaluated.The results show that over 90%of