期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Multiscale entropy based study of the pathological time series 被引量:2
1
作者 王俊 马千里 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4424-4427,共4页
This paper studies the multiscale entropy (MSE) of electrocardiogram's ST segment and compares the MSE results of ST segment with that of electrocardiogram in the first time. Electrocardiogram complexity changing c... This paper studies the multiscale entropy (MSE) of electrocardiogram's ST segment and compares the MSE results of ST segment with that of electrocardiogram in the first time. Electrocardiogram complexity changing characteristics has important clinical significance for early diagnosis. Study shows that the average MSE values and the varying scope fluctuation could be more effective to reveal the heart health status. Particularly the multiscale values varying scope fluctuation is a more sensitive parameter for early heart disease detection and has a clinical diagnostic significance. 展开更多
关键词 ELECTROCARDIOGRAM ST segment multiscale entropy coronary heart disease
在线阅读 下载PDF
基于WOA-VMD-MSE-SVM的海水泵激励源识别方法 被引量:1
2
作者 滕佳篷 武国启 富琦晋 《舰船科学技术》 北大核心 2024年第18期44-48,共5页
针对海水泵的复杂多激励源难以准确识别问题,提出一种基于变分模态分解(VMD)、鲸鱼优化算法(WOA)、多尺度熵(MSE)和支持向量机(SVM)相结合的海水泵激励源识别方法。基于海水泵振动信号,首先采用VMD和WOA算法获取分解层数K与惩罚系数α... 针对海水泵的复杂多激励源难以准确识别问题,提出一种基于变分模态分解(VMD)、鲸鱼优化算法(WOA)、多尺度熵(MSE)和支持向量机(SVM)相结合的海水泵激励源识别方法。基于海水泵振动信号,首先采用VMD和WOA算法获取分解层数K与惩罚系数α两个重要参数,并对信号进行分解重组;然后提取重组信号的多尺度熵,作为WOA-SVM模型的输入特征向量,并对SVM的惩罚因子c和核系数g两个重要参数进行寻优,最后将得到的参数代入SVM模型进行训练与激励源识别。通过实船海水泵激励源识别及对比分析,验证识别方法的有效性。研究结果表明提出的WOA-VMD-MSE-SVM算法满足海水泵激励源识别准确要求。 展开更多
关键词 激励源识别 海水泵 支持向量机 多尺度熵 鲸鱼优化算法 变分模态分解
在线阅读 下载PDF
基于IMSE和参数优化VMD的滚动轴承故障诊断方法
3
作者 王敏娟 贾茜 +1 位作者 汪友明 丁文柯 《西安邮电大学学报》 2024年第4期111-118,共8页
针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法。该方法先利... 针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法。该方法先利用IMSE对原始时间序列进行平滑粗粒化,并用每个序列的最大值代替平均值表示粗粒化序列的信息,避免多尺度样本熵(Multiscale Sample Entropy,MSE)中存在的数据丢失问题。结合尺度谱与求和模糊熵优化VMD参数,得到最优模态分量并筛选重构信号,将重构信号的IMSE值作为特征向量输入支持向量机进行故障诊断。实验结果表明,所提方法获得了更精确的故障信号特征且提高了故障诊断精度。 展开更多
关键词 滚动轴承故障诊断 变分模态分解 尺度谱 求和模糊熵 多尺度样本熵
在线阅读 下载PDF
基于VMD-MSE与SSA-SVM的往复式压缩机气阀故障诊断 被引量:13
4
作者 别锋锋 朱鸿飞 +1 位作者 彭剑 张莹 《振动与冲击》 EI CSCD 北大核心 2022年第19期289-295,共7页
往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提... 往复压缩机气阀故障振动信号具有较强的非线性和非平稳性。为了从往复压缩机气阀振动信号中提取故障特征用于故障诊断,提出一种基于变分模态分解(variational mode decomposition,VMD)与多尺度熵(multi-scale entrope,MSE)的故障特征提取方法,并与采用麻雀寻优算法(soarrow search algorithm,SSA)优化的支持向量机(suppot vector mackine,SVM)相结合,用于往复压缩机气阀故障诊断;通过对往复压缩机气阀信号进行VMD分解,选取合适的内禀模态分量(intrinsic mode function,IMF)进行信号重构,基于MSE熵值分析构成特征向量集,最后将其输入SSA-SVM训练并识别故障类型。试验结果表明,基于VMD-MSE与SSA-SVM的故障诊断模型能有效并准确的识别往复压缩机气阀故障。 展开更多
关键词 往复压缩机 变分模态分解 多尺度样本熵 支持向量机 模式识别
在线阅读 下载PDF
滚动轴承的MSE和PNN故障诊断方法 被引量:16
5
作者 陈慧 张磊 +1 位作者 熊国良 周继慧 《噪声与振动控制》 CSCD 2014年第6期169-173,共5页
针对滚动轴承不同运行状态振动信号具有不同复杂性的特点,提出一种新的基于多尺度熵(multiscale entropy,MSE)和概率神经网络(probabilistic neural networks,PNN)的滚动轴承故障诊断方法。该方法首先利用MSE方法对滚动轴承振动信号进... 针对滚动轴承不同运行状态振动信号具有不同复杂性的特点,提出一种新的基于多尺度熵(multiscale entropy,MSE)和概率神经网络(probabilistic neural networks,PNN)的滚动轴承故障诊断方法。该方法首先利用MSE方法对滚动轴承振动信号进行特征提取,并将其作为PNN神经网络的输入,再利用PNN自动识别轴承故障类型及故障程度。实验数据包括不同故障类型和不同故障程度样本,结果表明,相比于小波包分解和PNN结合的诊断方法,提出的方法具有更高的诊断精度,能有效实现滚动轴承故障类型及程度的诊断。 展开更多
关键词 振动与波 多尺度熵 概率神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
基于SIFT和MSE的局部聚集特征描述新算法 被引量:3
6
作者 何林远 毕笃彦 +2 位作者 马时平 周理 南栋 《电子学报》 EI CAS CSCD 北大核心 2014年第8期1619-1623,共5页
为寻找更具鲁棒性和计算简便的特征描述子,提出了一种基于SIFT和MSE的局部聚集特征描述算法.分析说明了该方法在继承SIFT算法良好性质的基础上,通过对多尺度下信息熵的估计,能够快速准确找出图像局部结构特征并利用改进的非线性降维方... 为寻找更具鲁棒性和计算简便的特征描述子,提出了一种基于SIFT和MSE的局部聚集特征描述算法.分析说明了该方法在继承SIFT算法良好性质的基础上,通过对多尺度下信息熵的估计,能够快速准确找出图像局部结构特征并利用改进的非线性降维方法对特征描述子进行特征重划.实验结果表明,在图像尺度缩放、旋转、模糊、亮度变化等多种变换条件下,该描述子不仅能够取得更多的特征效果,并且计算速度较原算法大幅提升.该算法适用于实时性要求较高,存在旋转、尺度缩放、亮度差异等变换下的结构图像寻找描述子. 展开更多
关键词 多尺度熵 局部聚集特征 非线性降维
在线阅读 下载PDF
基于VMD-ICMSE和半监督判别SOINN L-Isomap的滚动轴承故障诊断 被引量:4
7
作者 戚晓利 王振亚 +2 位作者 吴保林 叶绪丹 潘紫微 《振动与冲击》 EI CSCD 北大核心 2020年第4期252-260,共9页
针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从... 针对从滚动轴承非线性、非平稳振动信号中提取故障特征困难的问题,提出一种基于半监督判别自组织增量学习神经网络界标点的等度规映射(SSDSL-Isomap)的滚动轴承故障诊断方法。利用基于变分模态分解的改进复合多尺度样本熵(VMD-ICMSE)从复杂域提取振动信号的故障特征,构建高维故障特征集;采用SSDSL-Isomap方法对高维故障特征集进行维数约简,提取出利于识别的低维、敏感故障特征子集;应用粒子群优化极限学习机(PSO-ELM)分类器对低维故障特征进行故障识别,判别故障类型。VMD-ICMSE方法集成了VMD自适应分解非线性信号与ICMSE衡量时间序列复杂性程度的优势,提高故障特征提取能力;SSDSL-Isomap方法综合了全局流形结构、半监督型双约束图构建以及SOINN界标点选取的优点,增强故障分类能力。调心球轴承故障诊断实验分析结果表明,该方法对实验数据的故障识别率达到100%。 展开更多
关键词 故障诊断 滚动轴承 SSDSL-Isomap 变分模态分解(VMD) 改进复合多尺度熵(ICmse) 粒子群优化极限学习机(PSO-ELM)
在线阅读 下载PDF
基于互补集合经验模态分解的相位敏感光时域反射计系统降噪方法
8
作者 岳新博 高旭 +2 位作者 高阳 王海涛 鲁秀娥 《红外与激光工程》 北大核心 2025年第2期134-148,共15页
为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)... 为了提高相位敏感光时域反射计(Φ-OTDR)系统测量振动信号信噪比,提出了一种基于互补集合经验模态分解(CEEMD)的新型去噪方法。CEEMD算法对数字正交(I/Q)解调算法获取的瑞利后项散射光幅值信号和相位信号进行分解,经多尺度排列熵(MPE)算法筛选后,通过改进的小波阈值算法进行去噪,并设计采用多元宇宙优化(MVO)算法对参数进行优化。实际搭建了外差式Φ-OTDR系统,经仿真和实际测试验证文中算法有效性。最后,将设计算法与以往的经验模态分解-皮尔逊相关系数(EMD-PCC)、自适应噪声完备集合经验模态分解(CEEMDAN)及变分模态分解-改进小波阈值(VMD-NWT)去噪方法进行了对比。结果表明,在10.14 km的传感光纤位置上,该方法对于低频10 Hz、中频200 Hz以及高频1 200 Hz的振动事件,其位置信息信噪比分别可达8.88、30.26、11.90 dB,对不同频率段的振动信号均具备有效的去噪能力,且系统定位精度更高。该方法在提高系统信噪比的同时,成功地对振动信号进行了解调,且解调效果比其他三种算法效果更好,为Φ-OTDR系统降噪研究提供了新思路。 展开更多
关键词 相位敏感光时域反射仪 互补集合经验模态分解算法 多尺度排列熵 改进的小波阈值算法 多元宇宙优化算法
在线阅读 下载PDF
基于ISGMD-CMAE的滚动轴承复合故障特征提取方法
9
作者 李颖 于家奇 +2 位作者 吴仕虎 巴鹏 马小英 《沈阳理工大学学报》 2025年第3期81-89,共9页
滚动轴承复合故障信号具有非线性和不确定性的特点,且信号中含有噪声,直接提取故障特征存在困难,为此提出一种基于改进辛几何模态分解(ISGMD)和复合多尺度注意熵(CMAE)的滚动轴承复合故障特征提取方法(ISGMD-CMAE)。针对辛几何模态分解(... 滚动轴承复合故障信号具有非线性和不确定性的特点,且信号中含有噪声,直接提取故障特征存在困难,为此提出一种基于改进辛几何模态分解(ISGMD)和复合多尺度注意熵(CMAE)的滚动轴承复合故障特征提取方法(ISGMD-CMAE)。针对辛几何模态分解(SGMD)方法中分解信号分量过多,导致信号特征过于分散,无法进行有效提取的问题,采用聚类算法对信号分量进行处理,依据相关系数和峭度构成的综合评价指标筛选分量重构信号,以突出故障特征;针对多尺度注意熵(MAE)方法在提取时序信号过程中会造成信息损失的问题,采用熵值稳定性较好的CMAE方法准确全面地提取故障信号。实验结果表明,本文提出的ISGMD-CMAE方法能够精准地对滚动轴承复合故障特征进行提取,为滚动轴承故障诊断提供了一种新思路。 展开更多
关键词 滚动轴承 故障特征 辛几何模态分解 多尺度注意熵
在线阅读 下载PDF
一种IMAE和IDHT的轴承故障识别新方法应用研究
10
作者 贺高锋 冯利军 《噪声与振动控制》 北大核心 2025年第1期146-151,196,共7页
为了提高故障识别精度,提出一种改进多尺度注意熵(Improved Multi-scale Attention Entropy,IMAE)和改进自组织分裂分层Voronoi细分(Improved Self-organizing Divisive Hierarchical Voronoi Tessellation,IDHT)分类器的轴承故障诊断... 为了提高故障识别精度,提出一种改进多尺度注意熵(Improved Multi-scale Attention Entropy,IMAE)和改进自组织分裂分层Voronoi细分(Improved Self-organizing Divisive Hierarchical Voronoi Tessellation,IDHT)分类器的轴承故障诊断新方法。首先,针对注意熵(Attention Entropy,AE)的缺陷,提出改进多尺度注意熵(IMAE);随后,采用IMAE对原始振动信号进行特征提取;其次,采用奇异值分解(Singular Value Decomposition,SVD)对特征向量进行降维操作;最后,针对自组织分裂分层Voronoi细分(Self-organizing Divisive Hierarchical Voronoi Tessellation,DHT)分类器的缺陷,基于Pearson相关系数对加权马氏距离(Weighted Mahalanobis Distance,WMD)进行改进,形成改进加权马氏距离(Improved Weighted Mahalanobis Distance,IWMD);并利用IWMD的优势对DHT分类器进行改进,形成IDHT分类器。为了测试所提新方法的准确性与有效性,采用试验台数据进行分析;通过分析发现其平均故障识别准确率高达98.533%。同时,为了验证所提方法的优越性,将其与8种故障模型进行对比,结果表明:采用所提新方法进行故障识别使正确率提高0.39%~8.06%。 展开更多
关键词 故障诊断 轴承 改进多尺度注意熵 IDHT
在线阅读 下载PDF
基于MSE-PCA的脑电睡眠分期方法研究 被引量:5
11
作者 刘雪峰 马州生 +2 位作者 赵艳阳 余传奇 范文兵 《电子技术应用》 北大核心 2017年第9期22-24,29,共4页
针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力... 针对传统的自动睡眠分期准确率不足问题,提出一种将多尺度熵(MSE)和主成分分析(PCA)联合使用的自动睡眠分期方法。以8例受试者睡眠脑电(EEG)监测数据及专家人工分期结果作为样本,首先使用MSE表征受试者脑电信号不同睡眠期的非线性动力学特征;然后使用PCA的前两个主成分向量代替MSE特征进行降维,实现降低数据冗余的同时保留绝大多数EEG非线性特征;最终将新向量的特征参数输入到反馈神经网络(BPNN)分类器中实现MSE-PCA模型的脑电睡眠状态的自动识别分类。实验结果表明,自动分期准确率可达到87.9%,kappa系数0.77,该方法能提高脑电自动睡眠分期系统的准确率和稳定性。 展开更多
关键词 自动睡眠分期 脑电信号(EEG) 多尺度熵(mse) 主成分分析(PCA) 反馈神经网络(BPNN)
在线阅读 下载PDF
基于MSE与PSO-SVM的机车轮对轴承智能诊断方法 被引量:14
12
作者 张龙 彭小明 +3 位作者 熊国良 王良 黄婧 胡俊锋 《铁道科学与工程学报》 CAS CSCD 北大核心 2021年第9期2408-2417,共10页
针对DF4型内燃机车轮对轴承单一和复合故障在内的7种不同健康状态的识别问题,提出了一种基于多尺度熵(Multiscale Entropy,MSE)和粒子群优化支持向量机(PSO-SVM)的机车轮对轴承故障识别方法。计算轴承不同健康状态下振动信号在多个尺度... 针对DF4型内燃机车轮对轴承单一和复合故障在内的7种不同健康状态的识别问题,提出了一种基于多尺度熵(Multiscale Entropy,MSE)和粒子群优化支持向量机(PSO-SVM)的机车轮对轴承故障识别方法。计算轴承不同健康状态下振动信号在多个尺度上的样本熵构成MSE特征向量,利用PSO-SVM识别轴承所属故障类型及故障程度。收集了DF4型内燃机车包含单一和复合故障在内的7种不同健康状态的轮对轴承试件,在南昌机务段的JL-501机车轴承检测台上采集了各轴承试件的振动信号样本。实验数据分析结果表明,MSE的特征提取效果优于多尺度近似熵(Multiscale Approximate Entropy,MAE)和小波包分解,PSO-SVM的故障识别效果优于参数不经优化的SVM和参数网格寻优法的Grid-SVM。本文方法能够有效诊断机车轮对轴承的不同故障,为提高机务段检测机车轮对轴承故障的精度提供了一种有效的方法。 展开更多
关键词 轮对轴承 多尺度熵 支持向量机 粒子群 故障诊断
在线阅读 下载PDF
多尺度熵方法在机械故障诊断中的应用研究进展 被引量:2
13
作者 郑近德 姚殷柔 +2 位作者 潘海洋 童靳于 刘庆运 《安徽工业大学学报(自然科学版)》 CAS 2024年第1期46-57,97,共13页
机械设备状态监测与故障诊断的关键是故障特征的表征与提取,采用基于熵及相关方法建立的非线性动力学指标能够提取蕴藏在振动信号中的非线性故障特征信息。自熵方法引入以来,通过不断修改和改进来提高熵估计的准确性,多尺度熵进一步拓... 机械设备状态监测与故障诊断的关键是故障特征的表征与提取,采用基于熵及相关方法建立的非线性动力学指标能够提取蕴藏在振动信号中的非线性故障特征信息。自熵方法引入以来,通过不断修改和改进来提高熵估计的准确性,多尺度熵进一步拓展了时间序列其他尺度上包含的复杂度信息,其在设备状态监测与故障诊断中得到广泛应用。本文对单一尺度熵及多尺度样本熵、多尺度模糊熵、多尺度排列熵和多尺度散布熵等多尺度熵方法在机械智能故障诊断中的应用进行综述,总结不同方法的特点优势与不足;针对多变量数据处理问题,综述由单变量推广到多变量的多元多尺度熵的应用发展过程。最后结合多尺度熵相关方法在机械智能故障诊断中面临的问题与挑战,对未来发展方向进行展望,即在工业大数据应用、故障机理、可解释性角度构建基于熵的深度学习模型。 展开更多
关键词 多尺度熵 多元多尺度熵 智能故障诊断 滚动轴承 机械设备
在线阅读 下载PDF
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估 被引量:2
14
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动散布熵 累积欧氏距离矩阵测度
在线阅读 下载PDF
基于VMD-多尺度排列熵和SVM的船用空压机故障诊断方法 被引量:1
15
作者 胡以怀 李从跃 +3 位作者 沈威 崔德馨 张成 芮晓松 《中国测试》 CAS 北大核心 2024年第6期20-27,共8页
船用机械振动信号存在非线性、非平稳性问题,故障特征难提取,通过变分模态分解(variational mode decomposition,VMD)多尺度排列熵(multiscale permutation entropy,MPE)与支持向量机(support vector machine,SVM)融合的故障诊断方法,... 船用机械振动信号存在非线性、非平稳性问题,故障特征难提取,通过变分模态分解(variational mode decomposition,VMD)多尺度排列熵(multiscale permutation entropy,MPE)与支持向量机(support vector machine,SVM)融合的故障诊断方法,对振动信号进行研究。以空压机为例,首先,模拟6种空压机工况,对各工况的热工参数进行测试,分析各工况热工参数的变化程度,并对采集的振动信号进行频域分析。然后通过VMD对振动信号进行分解,得到一系列固有模态分量,计算与原始信号的互相关系数筛选敏感固有模态分量。最后计算出敏感固有模态分量的多尺度排列熵,将其作为特征向量,输入到SVM中,进行故障辨识。实验结果表明:VMD多尺度排列熵与SVM融合的空压机故障辨识方法,能有效地识别故障类型,整体准确率可保持在98.6667%,将此方法与其他方法进行对比,证明此方法有效。 展开更多
关键词 船用往复式空压机 变分模态分解 多尺度排列熵 故障诊断
在线阅读 下载PDF
基于多尺度熵分析的CO_(2) 气液两相流流型识别
16
作者 张文彪 王港华 +1 位作者 邵丁 章杰 《计量学报》 CSCD 北大核心 2024年第7期1024-1030,共7页
利用四电极对壁式电容传感器中对流型变化最敏感的一组极板对,获取CO_(2)气液两相流不同流型的电容时间序列,并采用多尺度熵算法进行分析。依据多尺度熵曲线的3个特征:前端多尺度熵率、中段多尺度熵率和末端多尺度熵截距,对不同气液两... 利用四电极对壁式电容传感器中对流型变化最敏感的一组极板对,获取CO_(2)气液两相流不同流型的电容时间序列,并采用多尺度熵算法进行分析。依据多尺度熵曲线的3个特征:前端多尺度熵率、中段多尺度熵率和末端多尺度熵截距,对不同气液两相流工况进行流型识别,并将识别结果与高速摄像机获得的两相流照片判断的流型进行对比。研究表明,通过电容时间序列多尺度熵曲线能够充分展示两相流动的动力学特征,使用多尺度熵曲线的3个特征进行流型识别,能够较为准确地识别分层流、段塞流、泡状流和混状流4种流型,识别准确率优于99%。 展开更多
关键词 气液两相流 二氧化碳 碳捕集与封存 电容传感器 多尺度熵 流型识别
在线阅读 下载PDF
基于时移多尺度波动散布熵和改进核极限学习机的水电机组故障诊断 被引量:4
17
作者 徐哲熙 刘婷 +3 位作者 任晟民 陈建林 吴凤娇 王斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期41-51,共11页
水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信... 水电在能源供给结构改革中承担重要角色,随着风、光、潮汐等新型能源的不断接入,水电机组的负荷运行范围不断加宽,导致水电机组发生事故的概率增加,因此,开展水电机组智能故障诊断研究具有十分重要的现实意义。本文针对水电机组振动信号中蕴含大量噪声信号,干扰故障诊断的问题,提出一种时移多尺度波动散布熵和改进核极限学习机相结合的水电机组故障诊断方法。首先,结合信息熵理论与时移思想,在多尺度波动散布熵的基础上,采用时移理论替代多尺度波动散布熵(MFDE)中传统的粗粒化过程,提出时移多尺度波动散布熵(TSMFDE),通过仿真实验,证明所提方法具有良好的时序长度鲁棒性、抗噪性及特征提取能力,解决了传统多尺度熵粗粒化不足的问题。然后,利用具有可移植性强、寻优能力强和收敛速度快等特征的算术优化算法(AOA)对核极限学习机(KELM)的正则化参数和核函数参数进行寻优,建立AOA-KELM分类器,解决了KELM超参数难以调节的问题。最终,通过转子试验台模拟实验,将TSMFDE提取的特征输入分类器中,完成模式识别工作。仿真结果表明,所提模型取得最高的诊断精度,达到了100.0%,相对于其他流行模型,本文所提模型展现了明显的优势,验证了所提模型的良好诊断精度。 展开更多
关键词 时移多尺度波动散布熵 核极限学习机 算术优化算法 水电机组 故障诊断
在线阅读 下载PDF
基于精细复合多尺度散布熵的抗蛇行减振器故障诊断 被引量:2
18
作者 岑潮宇 代亮成 +3 位作者 池茂儒 赵明花 郭兆团 曾鹏程 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4334-4343,共10页
抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble... 抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与精细复合多尺度散布熵结合的故障诊断方法。首先采用CEEMDAN分解信号得到本征模态函数(Intrinsic mode function,IMF),计算精细复合多尺度散布熵组成特征集,然后融合多个通道振动信号特征并用核主成分分析法进行降维,将降维后的特征集分成训练集和测试集,最后输入到改进麻雀算法优化的支持向量机模型中进行训练与诊断。为验证方法的可行性,以机车滚动振动试验台模拟列车运行的不同速度,设置抗蛇行减振器故障工况,通过转向架和车体多个位置传感器获得试验数据进行分析。研究结果表明,经过优选的特征集能更好地捕捉抗蛇行减振器故障的特征信息,与未经优选的特征集相比故障诊断结果正确率有所提升;多通道融合特征的方法与单通道相比反映故障信息更加全面,补偿了单一通道诊断结果精确度低的不足,进一步提高了故障诊断结果正确率;改进麻雀算法优化了模型参数,解决了参数设计的盲目性,提高了模型分类识别能力,并与其他算法相比验证了优越性。运用该方法对抗蛇行减振器进行故障诊断,能够有效诊断出抗蛇行减振器故障类型,为抗蛇行减振器故障诊断提供了一种新的方法。 展开更多
关键词 抗蛇行减振器 故障诊断 改进麻雀算法 精细复合多尺度散布熵 支持向量机
在线阅读 下载PDF
基于MFO-VMD和GMFE的往复压缩机轴承间隙故障诊断方法 被引量:2
19
作者 李彦阳 王金东 赵海洋 《石油化工应用》 CAS 2024年第1期98-104,114,共8页
基于往复压缩机轴承间隙故障呈现非线性、非稳定性和特征耦合的特点,本文提出了飞蛾捕焰优化算法(MFO)优化变分模态分解方法(VMD)和广义多尺度模糊熵(GMFE)的往复压缩机轴承间隙故障诊断新方法。首先,利用MFO对VMD的模态数k和惩罚因子... 基于往复压缩机轴承间隙故障呈现非线性、非稳定性和特征耦合的特点,本文提出了飞蛾捕焰优化算法(MFO)优化变分模态分解方法(VMD)和广义多尺度模糊熵(GMFE)的往复压缩机轴承间隙故障诊断新方法。首先,利用MFO对VMD的模态数k和惩罚因子α两个参数进行优化,得到最佳参数组合[k,α],从而利用优化后的VMD对轴承间隙振动信号进行信号分解处理,并进行振动信号的重构分析;然后,采用GMFE熵值算法对重构信号进行故障特征提取研究,从而得到所需的故障特征向量集;最后将提取的故障特征向量集输入智能分类算法支持向量机中进行故障的分类诊断研究。研究结果表明,本文提出的往复压缩机轴承间隙故障诊断方法有效地提高诊断的准确率,具有较好的故障特征提取优越性。 展开更多
关键词 往复压缩机 飞蛾捕焰优化算法 变分模态分解 广义多尺度模糊熵 故障诊断
在线阅读 下载PDF
基于改进的IIE-SegNet的快速图像语义分割方法 被引量:1
20
作者 李庆 王宏健 +2 位作者 李本银 肖瑶 迟志康 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期314-323,共10页
针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计... 针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计算量大的问题;研究Focal损失函数来解决正、负采样不平衡的问题。实验结果表明:与IIE-SegNet相比,本方法在PASCAL VOC 2012数据集上的语义分割速度更快,平均每次迭代快0.6 s左右,测试单张图像的时间平均减少了0.94 s;分割精度更高,MIoU提升了2.1%。在扩展的PASCAL VOC 2012(Exp-PASCAL VOC 2012)数据集上的语义分割速度更快,平均每次迭代快0.4 s左右,测试单张图像的时间平均减少了0.92 s;分割精度更高,MPA和MIoU分别提升了2.6%和2.8%,特别是对于小尺度目标分割边界更清晰,性能得到了很大的提升。 展开更多
关键词 语义分割 深度学习 多尺度空洞卷积空间金字塔池化 图像信息熵 全局加平均 VGG16 IIE-SegNet
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部