It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of curr...Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.展开更多
Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains chall...Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.展开更多
Thinning of antenna arrays has been a popular topic for the last several decades.With increasing computational power,this optimization task acquired a new hue.This paper suggests a genetic algorithm as an instrument f...Thinning of antenna arrays has been a popular topic for the last several decades.With increasing computational power,this optimization task acquired a new hue.This paper suggests a genetic algorithm as an instrument for antenna array thinning.The algorithm with a deliberately chosen fitness function allows synthesizing thinned linear antenna arrays with low peak sidelobe level(SLL)while maintaining the half-power beamwidth(HPBW)of a full linear antenna array.Based on results from existing papers in the field and known approaches to antenna array thinning,a classification of thinning types is introduced.The optimal thinning type for a linear thinned antenna array is determined on the basis of a maximum attainable SLL.The effect of thinning coefficient on main directional pattern characteristics,such as peak SLL and HPBW,is discussed for a number of amplitude distributions.展开更多
Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting t...Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.展开更多
In this paper, the reactive splitter network and meta-surface are proposed to radiate the wide-beam isolated element pattern and suppress mutual coupling (MC) of the low-profile phased array with the triangular lattic...In this paper, the reactive splitter network and meta-surface are proposed to radiate the wide-beam isolated element pattern and suppress mutual coupling (MC) of the low-profile phased array with the triangular lattice, respectively. Thus, broadband wide-angle impedance matching (WAIM) is imple-mented to promote two-dimensional (2D) wide scanning. For the isolated element, to radiate the wide-beam patterns approximat-ing to the cosine form, two identical slots backed on one sub-strate integrated cavity are excited by the feeding network con-sisting of a reactive splitter and two striplines connected with splitter output paths. For adjacent elements staggered with each other, with the metasurface superstrate, the even-mode cou-pling voltages on the reactive splitter are cancelled out, yielding reduced MC. With the suppression of MC and the compensa-tion of isolated element patterns, WAIM is realized to achieve 2D wide-angle beam steering up to ± 65° in E-plane, ± 45° in H-plane and ± 60° in D-plane from 4.9 GHz to 5.85 GHz.展开更多
In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the i...In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.展开更多
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy...Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.展开更多
In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subar...In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.展开更多
The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), f...The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.展开更多
In this study, we focused on the effect of the underwater explosion parameters of multi-point array explosion. The shock wave and bubble parameters of aggregate charge, two charges, and four charges were measured thro...In this study, we focused on the effect of the underwater explosion parameters of multi-point array explosion. The shock wave and bubble parameters of aggregate charge, two charges, and four charges were measured through an underwater explosion test, and their influence on the explosion power field of charge quantity and array distance was analyzed. Results show that the multi-shock wave collision of array explosion can be approximated to a linear superposition, and the interaction of delayed shock wave can be deemed as the increase of the shock wave baseline. Shock wave focusing and delayed superposition increase the shock wave peak pressure. Compared with the aggregate charge, the greater the number of array explosion points is, the higher the impulse and the gain of the bubble peak pressure are. At the same array distance, the smaller the charge quantity is, the higher the bubble impulse will be. At the same charge quantity, the smaller the array distance is, the higher the bubble impulse will be. The bubble period decreases gradually with the increase of the charge quantity, but the test orientation has little effect on the bubble period.展开更多
A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensor...A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.展开更多
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
文摘Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.
基金Supported by National Key Research and Development Program of China(2022YFA1404201)National Natural Science Foundation of China(62205187,U23A20380,U22A2091,62222509,62127817,62075120)+3 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(IRT_17R70)Fundamental Research Program of Shanxi Province(202103021223032,202303021222031)Project Funded by China Postdoctoral Science Foundation(2022M722006)Fund for Shanxi“1331 Project”Key Subjects Construction。
文摘Tin-lead(Sn-Pb)mixed perovskites are extensively investigated in near-infrared(NIR)photodetectors(PDs)owing to their excellent photoelectric performance.However,achieving high-performance Sn-Pb mixed PDs remains challenging,primarily because of the rapid crystallization and the susceptibility of Sn^(2+) to oxidation.To ad⁃dress these issues,this study introduces the multifunctional molecules 2,3-difluorobenzenamine(DBM)to modulate the crystallization of Sn-Pb mixed perovskites and retard the oxidation of Sn^(2+),thereby significantly enhancing film quality.Compared with the pristine film,Sn-Pb mixed perovskite films modulated by DBM molecules exhibit a high⁃ly homogeneous morphology,reduced roughness and defect density.The self-powered NIR PDs fabricated with the improved films have a spectral response range from 300 nm to 1100 nm,a peak responsivity of 0.51 A·W^(-1),a spe⁃cific detectivity as high as 2.46×10^(11)Jones within the NIR region(780 nm to 1100 nm),a linear dynamic range ex⁃ceeding 152 dB,and ultrafast rise/fall time of 123/464 ns.Thanks to the outstanding performance of PDs,the fabri⁃cated 5×5 PDs array demonstrates superior imaging ability in the NIR region up to 980 nm.This work advances the development of Sn-Pb mixed perovskites for NIR detection and paves the way for their commercialization.
文摘Thinning of antenna arrays has been a popular topic for the last several decades.With increasing computational power,this optimization task acquired a new hue.This paper suggests a genetic algorithm as an instrument for antenna array thinning.The algorithm with a deliberately chosen fitness function allows synthesizing thinned linear antenna arrays with low peak sidelobe level(SLL)while maintaining the half-power beamwidth(HPBW)of a full linear antenna array.Based on results from existing papers in the field and known approaches to antenna array thinning,a classification of thinning types is introduced.The optimal thinning type for a linear thinned antenna array is determined on the basis of a maximum attainable SLL.The effect of thinning coefficient on main directional pattern characteristics,such as peak SLL and HPBW,is discussed for a number of amplitude distributions.
基金Science and Technology Project of Aerospace Information Research Institute,Chinese Academy of Sciences(Y910340Z2F)Science and Technology Project of BBEF(E3E2010201)。
文摘Low-frequency signals have been proven valuable in the fields of target detection and geological exploration.Nevertheless,the practical implementation of these signals is hindered by large antenna diameters,limiting their potential applications.Therefore,it is imperative to study the creation of lowfrequency signals using antennas with suitable dimensions.In contrast to conventional mechanical antenna techniques,our study generates low-frequency signals in the spatial domain utilizing the principle of the Doppler effect.We also defines the antenna array architecture,the timing sequency,and the radiating element signal waveform,and provides experimental prototypes including 8/64 antennas based on earlier research.In the conducted experiments,121 MHz,40 MHz,and 10 kHz composite signals are generated by 156 MHz radiating element signals.The composite signal spectrum matches the simulations,proving our low-frequency signal generating method works.This holds significant implications for research on generating low-frequency signals with small-sized antennas.
基金supported by Sichuan Science and Technology Programs(2022NSFSC0547,2022ZYD0109)the 2020 Open Foundation of Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology)(CRKL200201).
文摘In this paper, the reactive splitter network and meta-surface are proposed to radiate the wide-beam isolated element pattern and suppress mutual coupling (MC) of the low-profile phased array with the triangular lattice, respectively. Thus, broadband wide-angle impedance matching (WAIM) is imple-mented to promote two-dimensional (2D) wide scanning. For the isolated element, to radiate the wide-beam patterns approximat-ing to the cosine form, two identical slots backed on one sub-strate integrated cavity are excited by the feeding network con-sisting of a reactive splitter and two striplines connected with splitter output paths. For adjacent elements staggered with each other, with the metasurface superstrate, the even-mode cou-pling voltages on the reactive splitter are cancelled out, yielding reduced MC. With the suppression of MC and the compensa-tion of isolated element patterns, WAIM is realized to achieve 2D wide-angle beam steering up to ± 65° in E-plane, ± 45° in H-plane and ± 60° in D-plane from 4.9 GHz to 5.85 GHz.
基金supported by the National Fund for Distinguished Young Scholars(52025072)the National Natural Science Foundation of China(52177012)the Foundation of National Key Laboratory of Science and Technology(614221722051301).
文摘In wideband noncooperative interference cancellation,the reference signals obtained through auxiliary antennas are weighted to cancel with the interference signal.The correlation between the reference signal and the interference signal determines interference cancellation performance,while the auxiliary antenna array affects the correlation by influencing the amplitude and phase of the reference signals.This paper analyzes the effect of auxiliary antenna array on multiple performances of wideband noncooperative interference cancellation.Firstly,the array received signal model of wideband interference is established,and the weight vector coupled with the auxiliary antennas array manifold is solved by spectral analysis and eigen-subspace decomposition.Then,multiple performances which include cancellation resolution,grating null,wideband interference cancellation ratio(ICR),and convergence rate are quantitatively characterized with the auxiliary antenna array.It is obtained through analysis that the performances mutually restrict the auxiliary antenna array.Higher cancellation resolution requires larger array aperture,but when the number of auxiliary antennas is fixed,larger array aperture results in more grating nulls.When the auxiliary antennas are closer to the main antenna,the wideband ICR is improved,but the convergence rate is reduced.The conclusions are verified through simulation of one-dimensional uniform array and two-dimensional nonuniform array.The experiments of three arrays are compared,and the results conform well with simulation and support the theoretical analysis.
基金supported by the National Natural Science Foundation of China under Grant 62301051.
文摘Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB.
基金supported by the National Natural Science Foundation of China (NSFC) [grant number. 61871414]。
文摘In this paper, a novel direction of arrival(DOA) estimation algorithm using directional antennas in cylindrical conformal arrays(CCAs) is proposed. To eliminate the shadow effect, we divide the CCAs into several subarrays to obtain the complete output vector. Considering the anisotropic radiation pattern of a CCA, which cannot be separated from the manifold matrix, an improved interpolation method is investigated to transform the directional subarray into omnidirectional virtual nested arrays without non-orthogonal perturbation on the noise vector. Then, the cross-correlation matrix(CCM) of the subarrays is used to generate the consecutive co-arrays without redundant elements and eliminate the noise vector. Finally, the full-rank equivalent covariance matrix is constructed using the output of co-arrays,and the unitary estimation of the signal parameters via rotational invariance techniques(ESPRIT) is performed on the equivalent covariance matrix to estimate the DOAs with low computational complexity. Numerical simulations verify the superior performance of the proposed algorithm, especially under a low signal-to-noise ratio(SNR) environment.
基金supported by the National Natural Science Foundation of China(6120129561231017)the Fundamental Research Funds for the Central Universities(K5051307017)
文摘The nonuniform L-shaped spatially spread loop and dipole(SSLD) array whose inter-element spacing is greater than half a wavelength is studied. A joint parameter estimation algorithm of direction of arrival(DOA), frequency and polarization is presented for plane-wave signals. The direct sampling and the corresponding delayed sampling data are used to construct the data correlation matrix. On the basis of the subspace theory and the least square method, the frequency and the steering vector of the whole array are obtained. According to the relationship of the array manifold vector between electric dipoles and magnetic loops,the polarization parameters are given. The unambiguous phase estimates are acquired by applying virtual baseline array transformation to the spatial steering vectors, and they are used as coarse references to disambiguate the cyclic phase ambiguities in phase differences between two adjacent array elements on the array,then the high accuracy DOA estimates are obtained. Closed-form solutions for each parameter are obtained. This method has advantages of lower calculation complexity and no parameter matching. The experiment results verify the effectiveness and feasibility of the presented algorithm.
文摘In this study, we focused on the effect of the underwater explosion parameters of multi-point array explosion. The shock wave and bubble parameters of aggregate charge, two charges, and four charges were measured through an underwater explosion test, and their influence on the explosion power field of charge quantity and array distance was analyzed. Results show that the multi-shock wave collision of array explosion can be approximated to a linear superposition, and the interaction of delayed shock wave can be deemed as the increase of the shock wave baseline. Shock wave focusing and delayed superposition increase the shock wave peak pressure. Compared with the aggregate charge, the greater the number of array explosion points is, the higher the impulse and the gain of the bubble peak pressure are. At the same array distance, the smaller the charge quantity is, the higher the bubble impulse will be. At the same charge quantity, the smaller the array distance is, the higher the bubble impulse will be. The bubble period decreases gradually with the increase of the charge quantity, but the test orientation has little effect on the bubble period.
文摘A new method for array calibration of array gain and phase uncertainties, which severely degrade the performance of spatial spectrum estimation, is presented. The method is based on the idea of the instrumental sensors method (ISM), two well-calibrated sensors are added into the original array. By applying the principle of estimation of signal parameters via rotational invariance techniques (ESPRIT), the direction-of-arrivals (DOAs) and uncertainties can be estimated simultaneously through eigen-decomposition. Compared with the conventional ones, this new method has less computational complexity while has higher estimation precision, what's more, it can overcome the problem of ambiguity. Both theoretical analysis and computer simulations show the effectiveness of the proposed method.