The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob...The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.展开更多
This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equil...This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.展开更多
This article introduces a fleet composition algorithm for a fleet of intermediate carriers, which should deliver a swarm of miniature unmanned aerial vehicles (mini-UAVs) to a mission area. The algorithm is based on...This article introduces a fleet composition algorithm for a fleet of intermediate carriers, which should deliver a swarm of miniature unmanned aerial vehicles (mini-UAVs) to a mission area. The algorithm is based on the sequential solution of several knapsack problems with various constraints. The algorithm allows both to form an initial set of required types of intermediate carriers, and to generate a fleet of intermediate carriers. The formation of a fleet of intermediate carriers to solve a suppression of enemy air defense (SEAD) problem is presented to illustrate the proposed algorithm.展开更多
本文针对多维背包问题维度高,约束强的特点提出了自记忆的学习优化模型(self memorized learn to improve,SML2I),通过深度强化学习的学习机制选择迭代搜索过程中的算子即模型学习当前的解以及历史搜索过程中的解,判断对当前解采用提升...本文针对多维背包问题维度高,约束强的特点提出了自记忆的学习优化模型(self memorized learn to improve,SML2I),通过深度强化学习的学习机制选择迭代搜索过程中的算子即模型学习当前的解以及历史搜索过程中的解,判断对当前解采用提升策略或者是扰动策略,在此基础上,进一步提出了哈希表与设计了2种有效的基于价值密度的扰动算子.使用哈希表记录历史搜索过程中的解,防止模型重复探索相同的解,基于价值密度的扰动策略生成的新解与之前的解决方案完全不同,因此针对扰动后的解再次采用提升策略同样有效,通过测试89个MKP数据集并与其他文献中先进的求解方法进行对比,实验结果验证了SML2I模型求解MKP问题的可行性与有效性.展开更多
基金supported by the National Natural Science Foundation of China(70871081)the Shanghai Leading Academic Discipline Project(S30504).
文摘The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated.
基金supported by the National Natural Science Foundation of China(7160118361502522)
文摘This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.
基金supported by the National Natural Science Foundation of China(60774064)the Aerospace Science Foundation (20085153015)
文摘This article introduces a fleet composition algorithm for a fleet of intermediate carriers, which should deliver a swarm of miniature unmanned aerial vehicles (mini-UAVs) to a mission area. The algorithm is based on the sequential solution of several knapsack problems with various constraints. The algorithm allows both to form an initial set of required types of intermediate carriers, and to generate a fleet of intermediate carriers. The formation of a fleet of intermediate carriers to solve a suppression of enemy air defense (SEAD) problem is presented to illustrate the proposed algorithm.
文摘本文针对多维背包问题维度高,约束强的特点提出了自记忆的学习优化模型(self memorized learn to improve,SML2I),通过深度强化学习的学习机制选择迭代搜索过程中的算子即模型学习当前的解以及历史搜索过程中的解,判断对当前解采用提升策略或者是扰动策略,在此基础上,进一步提出了哈希表与设计了2种有效的基于价值密度的扰动算子.使用哈希表记录历史搜索过程中的解,防止模型重复探索相同的解,基于价值密度的扰动策略生成的新解与之前的解决方案完全不同,因此针对扰动后的解再次采用提升策略同样有效,通过测试89个MKP数据集并与其他文献中先进的求解方法进行对比,实验结果验证了SML2I模型求解MKP问题的可行性与有效性.