Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction...To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.展开更多
针对国内外已有的复杂工业产品多学科设计仿真优化框架与平台在多学科模型集成能力、计算能力、协同能力方面的不足,研究和开发国产自主的新一代复杂工业产品多学科设计仿真优化框架与平台UniXDE(unified exploration and design enviro...针对国内外已有的复杂工业产品多学科设计仿真优化框架与平台在多学科模型集成能力、计算能力、协同能力方面的不足,研究和开发国产自主的新一代复杂工业产品多学科设计仿真优化框架与平台UniXDE(unified exploration and design environment)。本平台基于微服务云架构技术构建整体框架,提供低代码仿真优化流程编排、组件化CAD/CAE参数化集成接口、丰富的多学科设计优化算法库、分布式高性能优化计算引擎、可视化计算监控和报告自动生成等功能。通过白车身轻量化、船型优化、飞行器起落架性能优化等工程应用,表明UniXDE可显著提升产品综合性能和设计成功率。展开更多
为改进响应面协同优化(CO-RS,Collaborative Optimization based on ResponseSurface)方法的工程实用性,提出改进的CO-RS方法.在响应面建立中应用广义乘子法和信赖域法,取消响应面更新对梯度的依赖性.针对平流层飞艇的总体设计与优化问...为改进响应面协同优化(CO-RS,Collaborative Optimization based on ResponseSurface)方法的工程实用性,提出改进的CO-RS方法.在响应面建立中应用广义乘子法和信赖域法,取消响应面更新对梯度的依赖性.针对平流层飞艇的总体设计与优化问题,基于改进的CO-RS框架,进行了系统任务分析和学科耦合分析.对气动与推进子系统、结构子系统和能源子系统进行了学科分析,以最小化平流层飞艇的质量为目标,建立基于改进CO-RS框架的多学科设计优化(MDO,Multidisciplinary Design Optimization)模型和相应的学科分析模型.利用iSIGHT软件搭建求解平台,采用改进的CO-RS算法进行仿真计算,并得到合理结果,验证了所建立的MDO模型的合理性和改进的CO-RS算法在平流层飞艇总体设计优化中的有效性.展开更多
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
文摘To increase the efficiency of the multidisciplinary optimization of aircraft, an aerodynamic approximation model is improved. Based on the study of aerodynamic approximation model constructed by the scaling correction model, case-based reasoning technique is introduced to improve the approximation model for optimization. The aircraft case model is constructed by utilizing the plane parameters related to aerodynamic characteristics as attributes of cases, and the formula of case retrieving is improved. Finally, the aerodynamic approximation model for optimization is improved by reusing the correction factors of the most similar aircraft to the current one. The multidisciplinary optimization of a civil aircraft concept is carried out with the improved aerodynamic approximation model. The results demonstrate that the precision and the efficiency of the optimization can be improved by utilizing the improved aerodynamic approximation model with ease-based reasoning technique.
文摘针对国内外已有的复杂工业产品多学科设计仿真优化框架与平台在多学科模型集成能力、计算能力、协同能力方面的不足,研究和开发国产自主的新一代复杂工业产品多学科设计仿真优化框架与平台UniXDE(unified exploration and design environment)。本平台基于微服务云架构技术构建整体框架,提供低代码仿真优化流程编排、组件化CAD/CAE参数化集成接口、丰富的多学科设计优化算法库、分布式高性能优化计算引擎、可视化计算监控和报告自动生成等功能。通过白车身轻量化、船型优化、飞行器起落架性能优化等工程应用,表明UniXDE可显著提升产品综合性能和设计成功率。
文摘为改进响应面协同优化(CO-RS,Collaborative Optimization based on ResponseSurface)方法的工程实用性,提出改进的CO-RS方法.在响应面建立中应用广义乘子法和信赖域法,取消响应面更新对梯度的依赖性.针对平流层飞艇的总体设计与优化问题,基于改进的CO-RS框架,进行了系统任务分析和学科耦合分析.对气动与推进子系统、结构子系统和能源子系统进行了学科分析,以最小化平流层飞艇的质量为目标,建立基于改进CO-RS框架的多学科设计优化(MDO,Multidisciplinary Design Optimization)模型和相应的学科分析模型.利用iSIGHT软件搭建求解平台,采用改进的CO-RS算法进行仿真计算,并得到合理结果,验证了所建立的MDO模型的合理性和改进的CO-RS算法在平流层飞艇总体设计优化中的有效性.