This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired traje...This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.展开更多
A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper...A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.展开更多
Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the sys...Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the system states converge to the sliding surface at a determined finite time.To eliminate the chattering in the sliding mode and make the input controller bounded,hyperbolic tangent is used for designing the proposed fractional order sliding surface.Finally,the stability of the closed loop system using this bounded sliding mode controller is guaranteed by Lyapunov theory.A comparison with the integer order case is then presented and fractional order nonlinear polynomial systems are also studied as the special case.Finally,simulation results are provided to show the effectiveness of the designed controller.展开更多
这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用...这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。展开更多
A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and t...A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and the receding optimization problem includes several linear matrix inequality constraints. When the convex hull is applied to denote the saturating input, the algorithm has better performance. The numerical example can verify this result.展开更多
This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method ...This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.展开更多
This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSM...This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index.展开更多
Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain sch...Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented.展开更多
随着新能源发电比例越来越高,其受电网三相不平衡的影响越来越明显,尤其负序超标是导致电力系统安全性降低的重要原因。统一潮流控制器(unified power flow controller,UPFC)具有调节各序电流输出的能力,可用于提升系统的平衡性。为此,...随着新能源发电比例越来越高,其受电网三相不平衡的影响越来越明显,尤其负序超标是导致电力系统安全性降低的重要原因。统一潮流控制器(unified power flow controller,UPFC)具有调节各序电流输出的能力,可用于提升系统的平衡性。为此,首先建立基于解耦-补偿原理的UPFC正序最优补偿潮流算法;其次构建UPFC的负序补偿电流控制模型,将电压不平衡补偿的优化求解问题归结为凸二次约束二次规划(quadratically constrained quadratic programming,QCQP)问题,并采用原-对偶内点法求取UPFC的负序电流最优输出值;最后提出计及正序网损与负序电压指标的负序电压补偿最优潮流(optimal power flow,OPF)计算方法以及区域负序电压总体补偿策略。通过算例分析验证所提出方法的可行性与有效性。展开更多
文摘This paper addresses the time-varying formation-containment(FC) problem for nonholonomic multi-agent systems with a desired trajectory constraint, where only the leaders can acquire information about the desired trajectory. Input the fixed time-varying formation template to the leader and start executing, this process also needs to track the desired trajectory, and the follower needs to converge to the convex hull that the leader crosses. Firstly, the dynamic models of nonholonomic systems are linearized to second-order dynamics. Then, based on the desired trajectory and formation template, the FC control protocols are proposed. Sufficient conditions to achieve FC are introduced and an algorithm is proposed to resolve the control parameters by solving an algebraic Riccati equation. The system is demonstrated to achieve FC, with the average position and velocity of the leaders converging asymptotically to the desired trajectory. Finally, the theoretical achievements are verified in simulations by a multi-agent system composed of virtual human individuals.
基金Project(61374051,61603387)supported by the National Natural Science Foundation of ChinaProjects(20150520112JH,20160414033GH)supported by the Scientific and Technological Development Plan in Jilin Province of ChinaProject(20150102)supported by Opening Funding of State Key Laboratory of Management and Control for Complex Systems,China
文摘A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.
文摘Asymptotic stability of nonlinear fractional order affine systems with bounded inputs is dealt.The main contribution is to design a new bounded fractional order chattering free sliding mode controller in which the system states converge to the sliding surface at a determined finite time.To eliminate the chattering in the sliding mode and make the input controller bounded,hyperbolic tangent is used for designing the proposed fractional order sliding surface.Finally,the stability of the closed loop system using this bounded sliding mode controller is guaranteed by Lyapunov theory.A comparison with the integer order case is then presented and fractional order nonlinear polynomial systems are also studied as the special case.Finally,simulation results are provided to show the effectiveness of the designed controller.
基金Supported by National 'Natural Science Foundation of China (60374027), Program for New Century Excellent Talents in University (2004)
文摘这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。
文摘A receding horizon Hoo control algorithm is presented for linear discrete time-delay system in the presence of constrained input and disturbances. Disturbance attenuation level is optimized at each time instant, and the receding optimization problem includes several linear matrix inequality constraints. When the convex hull is applied to denote the saturating input, the algorithm has better performance. The numerical example can verify this result.
基金Projects(61573052,61273132)supported by the National Natural Science Foundation of China
文摘This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm(MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.
文摘This article makes the first attempt in assessing the influence of active constrained layer damping(ACLD)treatment towards precise control of frequency responses of functionally graded skew-magneto-electroelastic(FGSMEE)plates by employing finite element methods.The materials are functionally graded across the thickness of the plate in terms of modest power-law distributions.The principal equations of motion of FGSMEE are derived via Hamilton’s principle and solved using condensation technique.The effect of ACLD patches are modelled by following the complex modulus approach(CMA).Additionally,distinctive emphasis is laid to evaluate the influence of geometrical skewness on the attenuation capabilities of the plate.The accuracy of the current analysis is corroborated with comparison of previous researches of similar kind.Additionally,a complete parametric study is directed to understand the combined impacts of various factors like coupling fields,patch location,fiber orientation of piezoelectric patch in association with skew angle and power-law index.
基金Supported by National Natural Science Foundation of P. R. China (60474051, 60534020)Development Program of Shanghai Science and Technology Department (04DZ11008)the Program for New Century Excellent Talents in Universities of P. R. China (NCET)
文摘Aiming at a class of nonlinear systems with multiple equilibrium points, we present a dual-mode model predictive control algorithm with extended terminal constraint set combined with control invariant set and gain schedule. Local LQR control laws and the corresponding maximum control invariant sets can be designed for finite equilibrium points. It is guaranteed that control invariant sets are overlapped each other. The union of the control invariant sets is treated as the terminal constraint set of predictive control. The feasibility and stability of the novel dual-mode model predictive control are investigated with both variable and fixed horizon. Because of the introduction of extended terminal constrained set, the feasibility of optimization can be guaranteed with short prediction horizon. In this way, the size of the optimization problem is reduced so it is computationally efficient. Finally, a simulation example illustrating the algorithm is presented.
文摘随着新能源发电比例越来越高,其受电网三相不平衡的影响越来越明显,尤其负序超标是导致电力系统安全性降低的重要原因。统一潮流控制器(unified power flow controller,UPFC)具有调节各序电流输出的能力,可用于提升系统的平衡性。为此,首先建立基于解耦-补偿原理的UPFC正序最优补偿潮流算法;其次构建UPFC的负序补偿电流控制模型,将电压不平衡补偿的优化求解问题归结为凸二次约束二次规划(quadratically constrained quadratic programming,QCQP)问题,并采用原-对偶内点法求取UPFC的负序电流最优输出值;最后提出计及正序网损与负序电压指标的负序电压补偿最优潮流(optimal power flow,OPF)计算方法以及区域负序电压总体补偿策略。通过算例分析验证所提出方法的可行性与有效性。