期刊文献+
共找到824篇文章
< 1 2 42 >
每页显示 20 50 100
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
1
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
基于马氏距离的密度加权最小二乘孪生支持向量机
2
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量机 马氏距离 核函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
3
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
基于SVM模型的亚像素位移测量方法的研究
4
作者 沈澍 孙磊磊 +2 位作者 孙义杰 张浩 王森 《小型微型计算机系统》 北大核心 2025年第5期1156-1160,共5页
亚像素位移测量算法常见的有曲面拟合法、梯度法和插值法等,论文介绍了一种基于支持向量机(SVM)模型的亚像素位移测量方法,提出一种用于计算物体移动前后两幅图像的相关值来表征亚像素位移的梯度加权求和法.利用计算机模拟生成一系列以0... 亚像素位移测量算法常见的有曲面拟合法、梯度法和插值法等,论文介绍了一种基于支持向量机(SVM)模型的亚像素位移测量方法,提出一种用于计算物体移动前后两幅图像的相关值来表征亚像素位移的梯度加权求和法.利用计算机模拟生成一系列以0.001pixel步调的图像,其中70%作为训练集,30%作为测试集,为了检验该模型抗噪性,在生成的图像中添加不同方差的高斯噪声,并将其与曲面拟合法和梯度法进行比较,结果表明在精度要求为0.01pixel时,采用SVM法在保证高精度的情况下其抗噪性优于曲面拟合法和梯度法,其噪声方差上限为0.015,具有很好的鲁棒性可用于实际物体位移的高精度测量. 展开更多
关键词 支持向量机(SVM) 亚像素位移 数字图像相关法(DICM) 梯度加权求和法 高斯噪声
在线阅读 下载PDF
基于多信息融合的INFO-VMD-CNN的齿轮箱故障诊断方法
5
作者 吴胜利 郑子润 邢文婷 《振动与冲击》 北大核心 2025年第13期309-316,共8页
针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD... 针对齿轮箱振动信号复杂多变,导致现有的齿轮箱故障诊断方法诊断精度不高、较弱故障特征容易被噪声淹没等问题,提出了一种基于向量加权平均优化算法(weighted mean of vectors,INFO)、变分模态分解(variational mode decomposition,VMD)和卷积神经网络(convolutional neural network,CNN)的齿轮故障诊断方法。该方法首先采用熵权法将不同位置的振动传感器信号信息进行融合,利用INFO对VMD算法中参数进行优化,并设计一个复合评价指标作为参数优化的评价标准,使用奇异峭度差分谱的方法对敏感分量进行重构;其次,从重构的信号中提取时域、频域特征并输入到CNN模型中进行分类;最后通过Shap(Shapley additive explanations)值法对模型输入特征的重要性进行排序,分析不同特征组合对模型分类和特定故障识别的影响。在东南大学行星齿轮数据集上进行验证,结果表明,利用所提特征组合进行故障诊断,CNN模型故障诊断准确率为98.24%,高于其他特征组合,为行星齿轮箱的故障诊断提供了一组有效的特征指标。 展开更多
关键词 行星齿轮箱故障诊断 向量加权平均算法(INFO) 奇异峭度差分谱 卷积神经网络(CNN) 评价指标 Shap值法
在线阅读 下载PDF
基于RTSWMFE,IS-GSE与COOT-SVM的行星齿轮箱故障诊断
6
作者 戚晓利 杨艳 +1 位作者 崔创创 程主梓 《振动.测试与诊断》 北大核心 2025年第1期132-139,205,共9页
针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃pre... 针对行星齿轮箱特征提取困难的问题,提出一种基于精细时移加权多尺度模糊熵(refined time⁃shift weighted multiscale fuzzy entropy,简称RTSWMFE)、改进监督型几何和统计保持流形嵌入(improved supervised geometry and statistics⁃preserving manifold embedding,简称IS⁃GSE)和白骨顶优化算法支持向量机(coot optimization algorithm support vector machine,简称COOT⁃SVM)的行星齿轮箱故障诊断方法。首先,利用RTSWMFE提取高维故障特征信息;其次,采用IS⁃GSE对高维特征进行降维,提取出敏感、低维的特征;最后,将低维特征输入COOT⁃SVM中进行识别分类。行星齿轮箱故障诊断实验结果表明:IS⁃GSE方法采用余弦相似度与欧式距离相结合的距离度量方式,并融入监督学习思想,降维效果较佳;COOT⁃SVM方法对经RTSWMFE和IS⁃GSE二次提取的故障特征识别精度达到100%。 展开更多
关键词 故障诊断 行星齿轮箱 精细时移加权多尺度模糊熵 改进监督型几何和统计保持流形嵌入 白骨顶优化算法优化支持向量机
在线阅读 下载PDF
基于i-vector局部加权线性判别分析的说话人识别 被引量:6
7
作者 王明合 唐振民 张二华 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第12期2842-2848,共7页
基于i-vector的说话人识别系统通常采用LDA来消除训练和测试语音之间信道失配,不能保证样本在待识别语音近邻区域内具有最佳的分离度,这就使得目标说话人和其近邻间的得分差异较小,进而导致识别准确性下降。针对该问题,提出基于i-vecto... 基于i-vector的说话人识别系统通常采用LDA来消除训练和测试语音之间信道失配,不能保证样本在待识别语音近邻区域内具有最佳的分离度,这就使得目标说话人和其近邻间的得分差异较小,进而导致识别准确性下降。针对该问题,提出基于i-vector局部加权线性判别分析的说话人识别方法(LWLDA)。在计算类内和类间散度时,增加待识别语音近邻样本权重。在此基础上,通过提高待识别语音近邻域局部类间的分辨能力,尽可能减少因信道差异而产生的识别错误。在不同语音库上的实验结果表明:LWLDA在复杂信道环境下能够保持良好的鲁棒性;在交叉信道条件下的识别准确率比LDA平均提高3.6%。 展开更多
关键词 语音处理 说话人识别 身份认证向量 局部加权线性判别分析
在线阅读 下载PDF
基于改进TF-IIGM算法的畜禽疫病诊断模型研究
8
作者 郭晓利 李奇峰 +5 位作者 刘羽 张俊 赵红涛 杨淦 蒋瑞祥 余礼根 《计算机科学》 北大核心 2025年第S1期140-146,共7页
针对畜禽疫病文本中特征项权重分配不准导致诊断准确率较低的问题,利用提出的TF-IIGM-NW(Term Frequency-Improved Inverse Gravity Moment With Normalization and Weighting)改进算法结合Word2vec词向量进行文本向量化表示。该方法在T... 针对畜禽疫病文本中特征项权重分配不准导致诊断准确率较低的问题,利用提出的TF-IIGM-NW(Term Frequency-Improved Inverse Gravity Moment With Normalization and Weighting)改进算法结合Word2vec词向量进行文本向量化表示。该方法在TF-IIGM(Term Frequency-Improved Inverse Gravity Moment)算法的基础之上,对其进行归一化处理并结合基于关键词抽取算法设定的规则,进一步提升文本内核心关键词权重,然后将其与结合Word2vec词向量获取的文本向量化表示结果输入支持向量机(Support Vector Machine,SVM)进行畜禽疫病诊断。为了验证算法的有效性,基于自建的羊疫病文本数据集,将改进算法与现有词向量常见处理方式进行对比分析。结果表明,基于TF-IIGM-NW算法的macro-F1值与micro-F1值分别达到96.73%,96.76%;与传统经典算法TF-IDF(Term Frequency-Inverse Document Frequency)相比,分别提升2.25%,2.26%;与TF-IIGM算法相比,分别提高0.90%,0.97%。改进算法能够有效提升疫病诊断性能。通过SVM在每类疫病上的实验结果分析表明,羊口疮疫病类别最易被错判。 展开更多
关键词 TF-IIGM 权重 向量化表示 疫病诊断 SVM
在线阅读 下载PDF
基于weight-pooling词向量的上下文广告推荐算法 被引量:1
9
作者 杨长春 王俊 +1 位作者 袁敏 雷晨阳 《计算机应用与软件》 CSCD 2016年第12期224-229,共6页
提出一种基于weight-pooling词向量的上下文广告推荐算法,利用用户访问记录的互信息权重,计算weight-pooling词向量的余弦相似度。该算法改进了传统基于关键词匹配的推荐算法,避免了数据稀疏性和冷启动问题。通过实验分析,基于weightpoo... 提出一种基于weight-pooling词向量的上下文广告推荐算法,利用用户访问记录的互信息权重,计算weight-pooling词向量的余弦相似度。该算法改进了传统基于关键词匹配的推荐算法,避免了数据稀疏性和冷启动问题。通过实验分析,基于weightpooling词向量的上下文广告推荐算法在推荐效果上明显优于传统算法。 展开更多
关键词 词向量 相似度 weight-pooling上下文广告
在线阅读 下载PDF
基于加权局部密度的双超球支持向量机算法
10
作者 王梦珍 张德生 张晓 《计算机工程》 北大核心 2025年第5期188-195,共8页
使用一对超球面描述样本分布的双超球支持向量机(THSVM)算法没有考虑样本数据的密度信息,容易受噪声干扰,对所有特征赋予相同权重,忽略了不同特征对分类结果的影响。针对上述问题,提出了基于加权局部密度的双超球支持向量机(WLDTHSVM)... 使用一对超球面描述样本分布的双超球支持向量机(THSVM)算法没有考虑样本数据的密度信息,容易受噪声干扰,对所有特征赋予相同权重,忽略了不同特征对分类结果的影响。针对上述问题,提出了基于加权局部密度的双超球支持向量机(WLDTHSVM)算法。首先,利用信息增益计算每个特征的权重,并将特征权重应用到欧氏距离以及核函数的计算中,降低了不相关或弱相关的特征对样本相似性的影响;其次,利用特征加权的欧氏距离,构造一种新的加权局部密度函数,不仅考虑了样本点近邻的类别信息,而且考虑不同特征对样本间距离的影响,将归一化加权局部密度与误差项结合来增强模型的抗噪声干扰能力;最后,用特征加权的决策函数判定测试样本点的所属类别。在人工数据集和UCI数据集上对WLDTHSVM算法的可行性与有效性进行验证,实验结果表明,WLDTHSVM算法与支持向量机(SVM)、孪生支持向量机(TWSVM)、THSVM等对比算法相比,在11个UCI数据集上平均准确率最高可提升2.76百分点,在含噪数据集上具有较好的分类表现。 展开更多
关键词 支持向量机 局部密度 特征权重 信息增益 核函数
在线阅读 下载PDF
基于CINFO-LSTM的二次风机故障预警方法
11
作者 汤嘉祥 黄从智 《控制工程》 北大核心 2025年第6期1049-1057,共9页
针对二次风机状态监测故障的预警问题,提出了一种基于混沌向量加权平均(chaos weighted mean of vectors, CINFO)算法的长短期记忆(long short-term memory, LSTM)网络多输出回归方法。首先,使用Spearman相关系数分析方法筛选出与二次... 针对二次风机状态监测故障的预警问题,提出了一种基于混沌向量加权平均(chaos weighted mean of vectors, CINFO)算法的长短期记忆(long short-term memory, LSTM)网络多输出回归方法。首先,使用Spearman相关系数分析方法筛选出与二次风机轴承温度、二次风机轴承振动相关性系数较高的特征参数,对输入数据进行降维。然后,通过CINFO确定多输出LSTM网络的最优超参数,提高了神经网络的预测精度。随后,根据序贯概率比检验(sequential probability ratio test, SPRT)法确定了设备的故障阈值。最后,将选定的特征参数作为CINFO-LSTM网络的输入,使用序贯概率比检验法实现了二次风机的故障预警。实验结果验证了该方法的可行性和有效性。 展开更多
关键词 故障预警 深度学习 多输出回归 混沌向量加权平均 序贯概率比检验
在线阅读 下载PDF
基于自适应加权混合预测的电网虚假数据注入攻击检测
12
作者 束洪春 杨永银 +2 位作者 赵红芳 许畅 赵学专 《电网技术》 北大核心 2025年第3期1246-1256,I0095,共12页
电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先... 电力系统作为实时信息与能源高度融合的电力信息物理融合系统(cyber-physical power system,CPPS),虚假数据注入攻击(false data injection attacks,FDIAs)的准确辨识将有效保证CPPS安全稳定运行。为准确、高效地完成日前负荷预测,首先使用肯德尔相关系数(Kendall's tau-b)量化日期类型的取值,引入加权灰色关联分析选取相似日,再建立基于最小二乘支持向量机(least squares support vector machine,LSSVM)的日前负荷预测模型。将预测负荷通过潮流计算求解的系统节点状态量与无迹卡尔曼滤波(unscented Kalman filter,UKF)动态状态估计得到的状态量进行自适应加权混合,最后基于混合预测值和静态估计值间的偏差变量提出了攻击检测指数(attack detection index,ADI),根据ADI的分布检测FDIAs。若检测到FDIAs,使用混合预测状态量对该时刻的量测量进行修正。使用IEEE-14和IEEE-39节点系统进行仿真,结果验证了所提方法的有效性与可行性。 展开更多
关键词 电力信息物理系统 加权灰色关联分析 无迹卡尔曼滤波 最小二乘支持向量机 虚假数据攻击 攻击检测指数
在线阅读 下载PDF
基于稳态特征提取和CWLS-SVM的W火焰锅炉NOx排放量预估
13
作者 于闻歌 赵文杰 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期116-124,共9页
燃煤电厂排放的氮氧化物是环境污染的主要来源之一,燃烧优化可以有效降低锅炉NOx排放量,NOx排放量预测模型作为燃烧优化的基础,受到了人们广泛的关注。针对火电厂W火焰锅炉,提出了一种基于稳态特征提取的模型样本集构造方法,在此基础上... 燃煤电厂排放的氮氧化物是环境污染的主要来源之一,燃烧优化可以有效降低锅炉NOx排放量,NOx排放量预测模型作为燃烧优化的基础,受到了人们广泛的关注。针对火电厂W火焰锅炉,提出了一种基于稳态特征提取的模型样本集构造方法,在此基础上,提出一种组合加权最小二乘支持向量机(CWLS-SVM)建立NOx排放量预测模型。首先通过机理分析确定模型输入变量,基于滑动窗口对海量历史运行数据进行稳态特征搜索,以组合相似度判断法进一步筛选特征,构造模型样本集;然后,针对实际生产中LS-SVM对异常值和噪声干扰敏感、不同输入变量对结果的差异性影响等问题,采用基于局部异常因子的经验风险项加权和基于最大信息系数的特征变量加权的方法对LS-SVM进行了改进;最后进行了多种仿真对比实验。结果表明,CWLS-SVM相比于LS-SVM与其他神经网络模型,具有更强的鲁棒性和泛化能力,对实现锅炉燃烧优化具有重要意义。 展开更多
关键词 NOx排放量预测 稳态特征提取 最小二乘支持向量机 样本集构造 特征加权
在线阅读 下载PDF
基于TB-IDACNN的新闻推荐模型
14
作者 辛春花 鲁晓波 何婷 《计算机工程与设计》 北大核心 2025年第5期1387-1394,共8页
针对现有新闻推荐方法存在未考虑新闻的动态特性、难以深度挖掘新闻的语义信息等问题,提出一种融合TinyBERT和改进型动态注意卷积神经网络的个性化新闻推荐模型(TB-IDACNN)。充分利用TinyBERT词向量模型、卷积神经网络和内积注意力网络... 针对现有新闻推荐方法存在未考虑新闻的动态特性、难以深度挖掘新闻的语义信息等问题,提出一种融合TinyBERT和改进型动态注意卷积神经网络的个性化新闻推荐模型(TB-IDACNN)。充分利用TinyBERT词向量模型、卷积神经网络和内积注意力网络等深度学习模型的优势,综合考虑新闻的动态特性和静态特性,实现个性化新闻推荐。在MIND和Adressa数据集上的结果表明,相比其它几种先进的新闻推荐模型,所提模型可以获得更好的推荐性能,能够有效满足用户在新闻推荐任务中的需求。 展开更多
关键词 动态神经网络 新闻推荐 词嵌入模型 内积注意力机制 卷积神经网络 词向量化 平均加权池化
在线阅读 下载PDF
基于灰狼算法优化DBN-SVM的入侵检测方法
15
作者 彭庆媛 王晓峰 +3 位作者 唐傲 王军霞 华盈盈 何飞 《南京大学学报(自然科学版)》 北大核心 2025年第2期270-282,共13页
入侵检测技术作为一种可靠的网络安全防御手段,在保障网络安全方面具有重要意义.深度信念网络(Deep Belief Network,DBN)结合支持向量机(Support Vector Machine,SVM)是一种具有良好泛化能力和分类性能的机器学习方法,在入侵检测领域有... 入侵检测技术作为一种可靠的网络安全防御手段,在保障网络安全方面具有重要意义.深度信念网络(Deep Belief Network,DBN)结合支持向量机(Support Vector Machine,SVM)是一种具有良好泛化能力和分类性能的机器学习方法,在入侵检测领域有着广泛的应用.然而,该方法在处理高维数据时容易出现“维数灾难”问题,并且参数选择对分类性能有很大影响,针对以上不足,提出了一种基于灰狼算法(Grey Wolf Optimization,GWO)优化DBN-SVM的入侵检测方法.在GWO算法中,通过引入自适应狩猎权重系数和改进头狼位置更新公式来加快收敛速度和扩展狼群搜索范围,通过加入最优灰狼个体自适应扰动策略来避免陷入局部最优.进一步利用改进后的GWO算法优化DBN-SVM,并应用于入侵检测.实验结果表明,提出的方法在NSL-KDD和UNSW-NB15数据集上的准确率比未改进的DBN-SVM分别提高6.5%和5.7%,满足入侵检测的应用需求. 展开更多
关键词 深度信念网络 支持向量机 灰狼优化算法 自适应狩猎权重系数 t分布扰动 入侵检测
在线阅读 下载PDF
基于模糊层次法和熵权法的电源点到役评估法
16
作者 陈海华 孙卫锋 +3 位作者 邹晓昕 胡旦华 余天保 邵文妍 《电源学报》 北大核心 2025年第2期290-297,共8页
针对我国近期电源点逐步到役的情况,提出1种基于改进模糊层次法和熵权法的评估方法。首先基于层次分析法构建合适的层次结构,形成判断矩阵。随后利用模糊层次分析法对各层级之间的判断矩阵进行处理,得出面向重要性的权重向量。同时采用... 针对我国近期电源点逐步到役的情况,提出1种基于改进模糊层次法和熵权法的评估方法。首先基于层次分析法构建合适的层次结构,形成判断矩阵。随后利用模糊层次分析法对各层级之间的判断矩阵进行处理,得出面向重要性的权重向量。同时采用德尔菲调查法形成最末一级子准则层与目标层的评估矩阵,经归一化处理后利用熵权法求得面向价值性的权值向量。然后把2种权值向量经过综合化处理,形成综合权重向量。最后形成方案层对目标层的最终权重向量,得出推荐意见。通过算例,证明该评价方法灵活性强,适用性广,过程清晰合理,结果直观准确。 展开更多
关键词 模糊层次法 熵权法 综合权重向量 电源点到役 多方案评估
在线阅读 下载PDF
基于改进RBF神经网络的四旋翼无人机故障诊断与容错控制
17
作者 尚冠宇 《计算机应用与软件》 北大核心 2025年第7期392-397,共6页
针对四旋翼无人机(UAV)经常会遇到执行器故障而影响飞行的问题,提出一种基于改进神经网络的无人机故障诊断和容错控制方法。该文建立UAV故障数学模型;通过在RBF神经网络中引入权值向量自适应律、中心向量自适应律和调整参数进行改进;利... 针对四旋翼无人机(UAV)经常会遇到执行器故障而影响飞行的问题,提出一种基于改进神经网络的无人机故障诊断和容错控制方法。该文建立UAV故障数学模型;通过在RBF神经网络中引入权值向量自适应律、中心向量自适应律和调整参数进行改进;利用改进神经网络设计故障诊断和容错控制方法。仿真结果表明,提出的改进方法与传统的故障诊断和容错控制方法相比具有更优的稳定性和准确性,故障诊断的最大误差仅为0.01,容错控制的最大跟踪误差仅为0.3°,显著提升无人机的控制效果。 展开更多
关键词 四旋翼无人机 执行器故障 神经网络 权值向量自适应律 故障诊断 容错控制
在线阅读 下载PDF
基于强化学习与变权组合模型的EV充电需求功率预测方法
18
作者 宋宗仁 葛泉波 李春喜 《数据采集与处理》 北大核心 2025年第2期530-544,共15页
当电动汽车(Electric vehicle,EV)与充电桩连接时,精确预测电动汽车动力电池组的充电需求功率,对于防止电池组过充电至关重要。由于电池组物理模型的复杂性使基于其充电需求功率预测方法通常难以构建,且实时性不高。此外,单一预测模型... 当电动汽车(Electric vehicle,EV)与充电桩连接时,精确预测电动汽车动力电池组的充电需求功率,对于防止电池组过充电至关重要。由于电池组物理模型的复杂性使基于其充电需求功率预测方法通常难以构建,且实时性不高。此外,单一预测模型的预测精度偏低。针对上述问题,结合充电数据与机器学习,提出一种基于强化学习与变权组合模型的EV充电需求功率预测方法。在传统灰狼优化算法的基础上,将混沌映射、精英反向学习策略相结合以提高初始种群的质量,利用强化学习的动态权重策略更新灰狼个体位置来优化最小二乘支持向量机(Least square support vector machine,LSSVM)算法中的参数;通过基于时变权重分配的变权组合方法合理分配极限学习机预测模型与改进LSSVM预测模型的权重,解决单一预测模型方法的不足;采用电动汽车的实际充电数据对所提预测算法进行验证,新方法相较于其他3种传统方法在预测精度上分别提高了4.75%、3.84%和0.38%。 展开更多
关键词 充电需求功率 变权组合 强化学习 灰狼优化算法 最小二乘支持向量机
在线阅读 下载PDF
基于事件触发灰狼优化算法的四旋翼无人机三维航迹规划
19
作者 秦冬燕 闫晓辉 +1 位作者 邵桂伟 姚玉武 《智能系统学报》 北大核心 2025年第3期699-706,共8页
针对复杂环境下四旋翼无人机三维航迹规划问题,提出了一种改进的事件触发灰狼优化算法(event triggered grey wolf optimization,ETGWO)。引入球面矢量刻画飞行路径的生成,通过减少搜索空间提升搜索能力;设计自适应权重动态调整飞行航... 针对复杂环境下四旋翼无人机三维航迹规划问题,提出了一种改进的事件触发灰狼优化算法(event triggered grey wolf optimization,ETGWO)。引入球面矢量刻画飞行路径的生成,通过减少搜索空间提升搜索能力;设计自适应权重动态调整飞行航迹成本适应度函数,以提高航迹规划效率和准确性;在灰狼优化算法(grey wolf optimization,GWO)基础上,选择使用改进的非线性收敛因子,提升算法的鲁棒性;为了更好地平衡算法的全局搜索和局部搜索能力,通过引入基于事件触发机制的灰狼个体位置更新速度来改进GWO算法的位置更新策略。仿真对比实验表明,所提出ETGWO算法在四旋翼无人机(quadrotor unmanned aerial vehicles,QUAV)飞行航迹规划方面具有更优越的性能。 展开更多
关键词 改进GWO算法 事件触发 三维航迹规划 球面矢量 自适应加权 非线性收敛因子 速度暂停 四旋翼无人机
在线阅读 下载PDF
Design and realization of threshold secret sharing scheme with random weights
20
作者 Ye Zhenjun Fang Zhenming +1 位作者 Wang Chunfeng Meng Fanzhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1091-1095,共5页
A new threshold secret sharing scheme is constructed by introducing the concept of share vector, in which the number of shareholders can be adjusted by randomly changing the weights of them. This kind of scheme overco... A new threshold secret sharing scheme is constructed by introducing the concept of share vector, in which the number of shareholders can be adjusted by randomly changing the weights of them. This kind of scheme overcomes the limitation of the static weighted secret sharing schemes that cannot change the weights in the process of carrying out and the deficiency of low efficiency of the ordinary dynamic weighted sharing schemes for its resending process. Thus, this scheme is more suitable to the case that the number of shareholders needs to be changed randomly during the scheme is carrying out. 展开更多
关键词 random weight secret sharing share vector.
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部