期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
基于复合多尺度二维时频排列熵的滚动轴承故障诊断
1
作者 包金龙 郑近德 +2 位作者 潘海洋 童靳于 刘庆运 《噪声与振动控制》 北大核心 2025年第4期143-149,共7页
多尺度排列熵(Multiscale Permutation Entropy,MPE)是一种有效的衡量时间序列复杂性的非线性动力学指标,但其只能反映时间序列的时域信息,而频域信息却被忽略。为此,基于二维排列熵(Two-dimensional Permutation Entropy,PE2D),提出基... 多尺度排列熵(Multiscale Permutation Entropy,MPE)是一种有效的衡量时间序列复杂性的非线性动力学指标,但其只能反映时间序列的时域信息,而频域信息却被忽略。为此,基于二维排列熵(Two-dimensional Permutation Entropy,PE2D),提出基于时间序列时频域复杂性量度的二维时频排列熵(Two-dimensional Time-frequency Permutation Entropy,TFPE2D)方法。为反映振动信号在不同尺度下的复杂程度、避免传统多尺度粗粒化导致信息丢失的缺陷,进一步提出复合多尺度二维时频排列熵(Composite Multi-scale Two-dimensional Time-frequency Permutation Entropy,CMTFPE2D),并采用仿真信号验证CMTFPE2D的有效性。同时,将CMTFPE2D与萤火虫优化支持向量机(Firefly Algorithmsupport Vector Machine,FA-SVM)相结合应用于滚动轴承故障诊断,并采用实测数据进行分析,结果表明:所提故障特征提取与诊断方法能够有效识别滚动轴承不同故障程度和故障位置,且识别精度更高。 展开更多
关键词 故障诊断 排列熵 二维时频排列熵 复合多尺度二维时频排列熵 滚动轴承
在线阅读 下载PDF
基于多元多尺度排列模糊熵的滚动轴承故障特征提取方法
2
作者 吕明辰 袁强 +2 位作者 周瑞平 刘虹 梁崇琨 《轴承》 北大核心 2025年第6期97-103,共7页
针对滚动轴承振动信号非线性、非周期性和高背景噪声的特点,提出了基于多元多尺度排列模糊熵(MvMPFE)的滚动轴承故障特征提取方法。该方法利用熵值计算在分析时间序列数据上的优势,结合多尺度模糊熵(MFE)的高计算精度和多尺度排列熵(MPE... 针对滚动轴承振动信号非线性、非周期性和高背景噪声的特点,提出了基于多元多尺度排列模糊熵(MvMPFE)的滚动轴承故障特征提取方法。该方法利用熵值计算在分析时间序列数据上的优势,结合多尺度模糊熵(MFE)的高计算精度和多尺度排列熵(MPE)的高抗噪能力,建立多尺度排列模糊熵(MPFE)故障特征提取模型,解决了熵值计算不稳定的问题,并在MPFE基础上引入多元粗粒形式,提出了MvMPFE的故障特征提取方法,解决了故障特征参数在计算过程中信息丢失的问题,增强了对故障信息的敏感度,从而更加全面和准确地提取滚动轴承故障特征。在凯斯西储大学轴承数据集及东南大学轴承数据集上的验证结果表明,基于MvMPFE的滚动轴承故障特征提取方法有良好的故障特征提取能力,能够全面和准确地识别轴承状态。 展开更多
关键词 滚动轴承 故障诊断 特征提取 信号处理 多元多尺度排列模糊熵
在线阅读 下载PDF
基于多频段排列熵的脑电信号复杂度分析
3
作者 牛焱 高凯 +3 位作者 丁茹男 温昕 周梦妮 相洁 《中国生物医学工程学报》 北大核心 2025年第2期153-164,共12页
复杂性分析在脑电(EEG)信号研究中有重要的意义。多元熵方法是有效的信号复杂性分析技术,但已有多元熵研究将变量设置为多通道时间序列,从多频段分析角度对大脑动力学的复杂性量化尚未得到广泛探索。对多元排列熵(mvPE)算法进行改进,本... 复杂性分析在脑电(EEG)信号研究中有重要的意义。多元熵方法是有效的信号复杂性分析技术,但已有多元熵研究将变量设置为多通道时间序列,从多频段分析角度对大脑动力学的复杂性量化尚未得到广泛探索。对多元排列熵(mvPE)算法进行改进,本研究提出多频段排列熵(mFPE),从时频维度上对大脑的复杂性进行更为细致的衡量。研究基于模拟数据和3组真实EEG数据对算法性能进行了分析。利用1/f噪声和高斯白噪声以及MIX模型产生的模拟数据,结果发现,与mvPE相比,mFPE表现出更高的灵敏度、较短的数据长度要求以及良好的抗噪性能。将mFPE算法应用于14名帕金森患者和14名健康对照的EEG数据的分析。结果发现,mFPE能显著区分正常人和病人的脑活动,并实现78.7%的分类准确率,优于mvPE(72.8%);其次,利用14名抑郁倾向患者和14名健康对照的EEG数据也发现mFPE相较于mvPE,准确率提高了6.6%;最后,利用32名正常人的视觉任务EEG数据,mFPE有效地揭示了不同任务刺激引起的EEG活动的改变,不同任务的分类准确率也均高于mvPE。mFPE算法为EEG信号复杂性的动态分析提供了新的视角和有效工具,有望在神经疾病诊断、脑功能研究及认知科学领域发挥重要作用。 展开更多
关键词 脑电 多元排列熵 多频段排列熵 复杂度分析
在线阅读 下载PDF
小净距隧道掘进爆破及其振动响应规律研究 被引量:3
4
作者 李小帅 高文学 +3 位作者 宿利平 张小军 胡宇 薛睿 《爆破》 CSCD 北大核心 2024年第2期194-202,共9页
为了研究爆破荷载作用下小净距隧道中夹岩区的动力稳定性问题,依托小龙门隧道爆破工程,开展了现场爆破振动监测试验。通过改进的变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multi-scale permutation entropy,MPE... 为了研究爆破荷载作用下小净距隧道中夹岩区的动力稳定性问题,依托小龙门隧道爆破工程,开展了现场爆破振动监测试验。通过改进的变分模态分解(variational mode decomposition,VMD)与多尺度排列熵(multi-scale permutation entropy,MPE)算法对爆破振动信号进行消噪处理,基于此分析了掏槽孔与周边孔爆破在后行洞左拱腰(非中夹岩区)、右拱腰(中夹岩区)中产生的振动特征差异。结果表明:采用改进的自适应VMD-MPE算法可以有效消除振动信号中的噪声,并降低了主观决策的影响;此外,相对于非中夹岩区,中夹岩对爆破振动具有明显的放大效应,其质点峰值振速明显大于非中夹岩区,但中夹岩区的振动衰减速度更快;同时,通过对比非中夹岩区与中夹岩区各测点振动频率特征可以发现,中夹岩区小于40 Hz的低频振动能量占比较大,更易引起支护结构的共振,发生损伤与破坏的风险更高,应重点关注;受“转角削弱”作用以及地震波传播路径的影响,在比例距离SD小于等于11.57 m·kg^(1/3)范围内,周边孔爆破在掌子面后方围岩中产生的振速大于掏槽孔。 展开更多
关键词 中夹岩 小净距隧道 爆破振动效应 变分模态分解 多尺度排列熵
在线阅读 下载PDF
基于tSNE多特征融合的JTC轨旁设备故障检测 被引量:5
5
作者 武晓春 郜文祥 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期1244-1255,共12页
无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障... 无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障类型复杂和故障特征提取不充分等问题,提出一种基于t分布随机邻域嵌入(t-distribution Stochastic Neighbor Embedding,tSNE)多特征融合的JTC轨旁设备故障检测模型。首先,根据不同轨旁设备故障对TCR感应电压信号的影响,分析各轨旁设备的故障特性。其次,提取TCR感应电压信号的方差、有效值、峰值因子等幅值域特征,以及排列熵、散布熵特征构成原始故障特征集。为了去除其中的冗余信息,得到具有较高判别性的融合流形特征,利用tSNE算法进行特征融合。最后输入深度残差网络(Deep Residual Network,DRN)得到故障检测混淆矩阵,实现轨旁设备故障定位。实验结果表明:tSNE算法融合后的特征在异类和同类故障样本之间分别有较大的类间间距和较小的类内间距,相比主成分分析(Principal Component Analysis, PCA)、随机相似性嵌入(Stochastic Proximity Embedding, SPE)、随机邻域嵌入(Stochastic Neighbor Embedding,SNE)算法具有更优的融合特征提取效果。此外,结合DRN可以有效识别多种轨旁设备故障,达到98.28%的故障检测准确率。通过现场信号进行实例验证,结果表明该故障检测模型能满足铁路现场对室外设备进行故障定位的实际需求。 展开更多
关键词 轨旁设备 幅值域 排列熵 散布熵 多特征融合 故障检测
在线阅读 下载PDF
基于GMPE和GWO-MKELM算法的往复压缩机轴承故障诊断 被引量:2
6
作者 李彦阳 王金东 曲孝海 《科学技术与工程》 北大核心 2024年第23期9842-9847,共6页
针对往复压缩机内部结构复杂,轴承间隙故障特征提取困难和识别准确率不高等问题,提出了多尺度排列熵和多核极限学习机混合算法的智能诊断新方法。首先,针对多尺度排列熵在多尺度过程中,利用均值粗粒化的方式在一定程度上“中和”了原始... 针对往复压缩机内部结构复杂,轴承间隙故障特征提取困难和识别准确率不高等问题,提出了多尺度排列熵和多核极限学习机混合算法的智能诊断新方法。首先,针对多尺度排列熵在多尺度过程中,利用均值粗粒化的方式在一定程度上“中和”了原始信号的动力学突变行为,降低了熵值分析的准确性,提出了一种广义多尺度排列熵算法;然后,为解决核极限学习机处理复杂数据样本分类存在的局限性,将高斯核函数、多项式核函数和感知器核函数进行线性叠加,构建混合核函数,提出了多核极限学习机模型。仿真实验结果表明,该故障诊断方法识别准确率高达98%,高效地实现了轴承不同种类故障的智能诊断。 展开更多
关键词 往复压缩机 灰狼优化算法 广义多尺度排列熵 多核极限学习机 故障诊断
在线阅读 下载PDF
融合多特征信息与GWO-SVM的机械关键设备故障诊断
7
作者 宋玲玲 王琳 +1 位作者 钟丽 李晨曦 《机械设计与制造》 北大核心 2024年第11期116-121,共6页
为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的... 为了提高机械关键设备故障诊断的精度,建立机械关键设备故障诊断模型。文章提出一种融合机械关键设备故障信号多特征信息与灰狼优化算法(Grey Wolf Optimization Algorithm,GWO)改进支持向量机(Support Vector Machine,SVM)(GWO-SVM)的机械关键设备故障诊断模型。首先,提取机械关键设备故障信号的时域特征、频域特征和多尺度加权排列熵特征,分别对比不同特征的机械关键设备故障诊断结果。其次,为提高SVM模型性能,运用GWO算法对SVM模型的惩罚参数P和核函数参数g进行优化选择,提出一种融合多特征信息与GWO-SVM的机械设备故障诊断模型。与GA-SVM、PSO-SVM和SVM相比,基于GWO-SVM的机械设备故障诊断模型的诊断精度最高。这里算法可以有效提高机械关键设备故障诊断正确率,为机械关键设备故障诊断提供了新的方法。 展开更多
关键词 时域特征 灰狼优化算法 支持向量机 频域特征 多尺度加权排列熵
在线阅读 下载PDF
基于改进小波阈值—CEEMDAN的变压器局部放电超声波信号白噪声抑制方法 被引量:15
8
作者 周晶 罗日成 黄军 《高压电器》 CAS CSCD 北大核心 2024年第1期163-171,共9页
为了有效去除变压器局部放电超声信号中的白噪声干扰,提高后续局部放电模式识别及定位的准确性,提出了一种基于改进小波阈值和自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEE... 为了有效去除变压器局部放电超声信号中的白噪声干扰,提高后续局部放电模式识别及定位的准确性,提出了一种基于改进小波阈值和自适应噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的变压器局部放电超声波信号去噪方法。首先,通过对放电信号进行CEEMDAN分解得到一系列由高频到低频的本征模函数IMF(intrinsic mode function);然后,利用多尺度排列熵(multi-scale permutation entropy,MPE)算法计算各阶IMF分量的排列熵PE(permutation entropy),根据各IMF的排列熵值确定信号的去噪阈值与有效阈值。对高于去噪阈值的IMF分量采用改进小波阈值法进行去噪处理,对低于有效阈值的IMF分量视为基线漂移进行剔除。最后,通过重构去噪分量与剩余分量来获得去噪后的超声波信号。仿真和实验结果均表明,文中所提出的去噪算法大大提高了信号的信噪比,并保留了原始超声波信号中的有效信息,对提高后续利用超声波信号进行局部放电模式识别及定位的精确性具有重要意义。 展开更多
关键词 局部放电 超声波信号去噪 改进小波阈值 多尺度排列熵 CEEMDAN
在线阅读 下载PDF
SSA-VMD与小波分解结合的GNSS坐标时序降噪方法 被引量:3
9
作者 杨厚明 鲁铁定 +1 位作者 孙喜文 何锦亮 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期360-365,390,共7页
利用麻雀搜索算法(sparrow search algorithm, SSA)优化变分模态分解(VMD),然后结合小波分解(WD),提出一种GNSS坐标时间序列降噪方法IVMD-WD。利用仿真信号和10个基准站的实测数据进行GNSS坐标时间序列降噪实验。结果表明,IVMD-WD方法... 利用麻雀搜索算法(sparrow search algorithm, SSA)优化变分模态分解(VMD),然后结合小波分解(WD),提出一种GNSS坐标时间序列降噪方法IVMD-WD。利用仿真信号和10个基准站的实测数据进行GNSS坐标时间序列降噪实验。结果表明,IVMD-WD方法的降噪效果优于经验模态分解(EMD)、集合经验模态分解(EEMD)和WD,能够更加有效地剔除GNSS坐标时间序列中的噪声。 展开更多
关键词 麻雀搜索算法 变分模态分解 小波分解 多尺度排列熵 GNSS坐标时间序列
在线阅读 下载PDF
基于均匀量化的二维多尺度排列熵算法
10
作者 王大铭 史鹏飞 +3 位作者 雷一航 边皓冉 梁敏 常利伟 《通信学报》 CSCD 北大核心 2024年第S1期75-86,共12页
为了解决将排列熵算法扩展到二维时,子序列中相等值会导致某些排列模式的概率增加的问题,提出了一种基于均匀量化的二维多尺度排列熵(MUPE_(2D))算法。算法通过基于均匀量化重新定义排列模式,消除了相等值对计算的影响。使用MUPE_(2D)... 为了解决将排列熵算法扩展到二维时,子序列中相等值会导致某些排列模式的概率增加的问题,提出了一种基于均匀量化的二维多尺度排列熵(MUPE_(2D))算法。算法通过基于均匀量化重新定义排列模式,消除了相等值对计算的影响。使用MUPE_(2D)算法对各种合成纹理、MIX_(2D)(p)图像和加密图像进行了研究,结果表明,即使图像中存在大量等值,MUPE_(2D)算法也能有效量化加密图像的复杂性和信息隐藏能力。综上所述,MUPE_(2D)算法为评估图像复杂度提供了一种有效的手段。 展开更多
关键词 二维排列熵 多尺度熵 加密图像分析 纹理分析
在线阅读 下载PDF
基于数字孪生的铣刀磨损状态识别方法研究
11
作者 水星 容芷君 +2 位作者 但斌斌 何强鉴 杨鑫 《组合机床与自动化加工技术》 北大核心 2024年第9期20-24,共5页
实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分... 实时精准地监测铣刀磨损状态对于提高加工质量与加工效率具有重要意义,提出一种基于数字孪生的铣刀磨损状态识别方法,该方法通过结合VMD-MPE特征提取方法和GA-SVM状态识别模型构建数字孪生体对铣刀磨损状态进行实时监测。首先,利用变分模态分解算法(VMD)分解铣刀振动信号得到包含磨损状态信息的模态分量;其次,引入多尺度排列熵(MPE)从包含磨损状态信息的模态分量中提取铣刀的非线性动力学特征,并取各有效模态分量的多尺度排列熵平均值作为特征矩阵;最后,通过遗传算法(GA)优化支持向量机(SVM)构建铣刀磨损状态识别模型。实验结果表明,所构建的数字孪生体具有良好识别效果,其识别精度可达97.33%。 展开更多
关键词 数字孪生 刀具磨损 状态识别 变分模态分解 多尺度排列熵 支持向量机
在线阅读 下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
12
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
在线阅读 下载PDF
多尺度排列熵及其在滚动轴承故障诊断中的应用 被引量:103
13
作者 郑近德 程军圣 杨宇 《中国机械工程》 EI CAS CSCD 北大核心 2013年第19期2641-2646,共6页
引入多尺度排列熵(MPE)的概念,用来检测振动信号不同尺度下的动力学突变行为,并将其应用于机械故障诊断中滚动轴承故障特征的提取,结合支持向量机(SVM),提出了一种基于MPE和SVM的滚动轴承故障诊断方法,将新提出的滚动轴承故障诊断方法... 引入多尺度排列熵(MPE)的概念,用来检测振动信号不同尺度下的动力学突变行为,并将其应用于机械故障诊断中滚动轴承故障特征的提取,结合支持向量机(SVM),提出了一种基于MPE和SVM的滚动轴承故障诊断方法,将新提出的滚动轴承故障诊断方法应用于实验数据分析,并通过与BP神经网络对比,结果表明,该方法能够有效地提取故障特征,实现故障类型的诊断。 展开更多
关键词 排列熵 多尺度排列熵 滚动轴承 故障诊断 支持向量机
在线阅读 下载PDF
基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究 被引量:31
14
作者 孙曙光 张强 +2 位作者 杜太行 王景芹 王岩 《中国电机工程学报》 EI CSCD 北大核心 2017年第18期5473-5482,共10页
目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local me... 目前设备的机械故障诊断技术的研究多限于定性诊断,而故障诊断中故障程度的定量评估更能有效的指导设备维护。该文提出了一种低压万能式断路器分合闸故障程度定量评估的方法。首先对断路器工作模式进行识别,即利用局部均值分解(local mean decomposition,LMD)将采集到的分合闸振动信号自适应分解,求取主要乘积函数(product function,PF)的改进多尺度排列熵(multi-scale permutation entropy,MMPE)构成特征向量,再经过降维后,作为改进支持向量机(support vector machine,SVM)的输入量,实现断路器工作模式的识别;当断路器处于故障模式时,对采集的振动信号求取多尺度排列熵偏均值(partial mean of multi-scale permutation entropy,PMMPE),作为故障程度定量评估指标,并参照所求得的不同故障模式的故障程度特性曲线,可实现分合闸故障程度的定量评估。经实测数据验证表明,所提方法可以完成断路器工作模式的有效识别,且PMMPE指标相较于峭度、能量和多尺度排列熵平均值指标,能够更加有效的完成低压万能式断路器分合闸故障程度的定量评估。 展开更多
关键词 低压万能式断路器 局部均值分解(LMD) 改进多尺度排列熵(MMPE) 支持向量机(SVM) 多尺度排列熵偏 均值(PMMPE)故障程度评估
在线阅读 下载PDF
基于多维度排列熵与支持向量机的轴承早期故障诊断方法 被引量:29
15
作者 贾峰 武兵 +1 位作者 熊晓燕 熊诗波 《计算机集成制造系统》 EI CSCD 北大核心 2014年第9期2275-2282,共8页
针对许多现有方法无法有效诊断滚动轴承早期故障的问题,引入排列熵的方法对轴承振动信号进行早期故障分析。通过研究嵌入维数和延迟时间对信号排列熵的影响,提出多维度排列熵的特征提取方法。利用多维度排列熵方法所提取的特征,建立了... 针对许多现有方法无法有效诊断滚动轴承早期故障的问题,引入排列熵的方法对轴承振动信号进行早期故障分析。通过研究嵌入维数和延迟时间对信号排列熵的影响,提出多维度排列熵的特征提取方法。利用多维度排列熵方法所提取的特征,建立了基于支持向量机的轴承早期故障智能诊断模型。对轴承不同类型、不同程度的故障数据进行分析,证明了多维度排列熵方法可以有效提取轴承不同状态的特征信息,与支持向量机结合的智能诊断模型可以精确地诊断轴承不同类型的早期故障,具有很强的通用性;该模型在贫样本的情况下,依然具有很高的诊断精度,适用于滚动轴承早期故障状态的在线监测。 展开更多
关键词 多维度排列熵 支持向量机 早期故障诊断 滚动轴承
在线阅读 下载PDF
基于变分模态分解和多尺度排列熵的变压器局部放电信号特征提取 被引量:25
16
作者 张蒙 朱永利 +1 位作者 张宁 张媛媛 《华北电力大学学报(自然科学版)》 CAS 北大核心 2016年第6期31-37,共7页
局部放电类型的识别对准确掌握变压器绝缘状态和合理安排检修维护有着重要的指导意义。识别放电类型的关键在于放电特征的提取。针对目前局部放电特征识别稳定性差,识别率低的问题,提出了一种基于变分模态分解(Variational Mode Decompo... 局部放电类型的识别对准确掌握变压器绝缘状态和合理安排检修维护有着重要的指导意义。识别放电类型的关键在于放电特征的提取。针对目前局部放电特征识别稳定性差,识别率低的问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和多尺度排列熵(Multi-scale permutation entropy,MPE)的特征提取方法,并验证了方法的有效性。利用VMD分解算法对实验室条件下采集的4种局部放电信号进行分解,得到数个包含不同频带信息的有限带宽的固有模态分量(band-limited intrinsic mode functions,BLIMFs),分别计算相应的多尺度排列熵,并将其组合成原始特征量。在此基础之上,利用最大相关最小冗余准则(max-relevance and min-redundancy criteria,mRMR)对原始特征量进行优选降维,最后使用支持向量机分类器实现分类。实验结果表明:在染噪情况下,该方法提取的多尺度排列熵仍能准确刻画不同的放电信号时频复杂度的差异,鲁棒性强,识别率高。 展开更多
关键词 变压器 局部放电 特征提取 变分模态分解 多尺度排列熵
在线阅读 下载PDF
基于多尺度排列熵的液压泵故障识别 被引量:30
17
作者 王余奎 李洪儒 叶鹏 《中国机械工程》 EI CAS CSCD 北大核心 2015年第4期518-523,共6页
将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡... 将排列熵引入液压泵的故障识别中,分析了排列熵作为液压泵故障特征指标的性能;采用互信息法和伪近邻法优选排列熵计算中的延迟时间和嵌入维数,基于优选参数得到了能够更好区分液压泵故障的排列熵。针对单尺度排列熵只能在单个尺度上衡量振动信号复杂度的不足,在对多尺度排列熵进行研究的基础上提出了一种综合多尺度排列熵熵值和排列熵变化趋势的指标——多尺度排列熵偏均值,对液压泵实测信号的分析结果验证了该指标作为液压泵故障特征的有效性和优越性。 展开更多
关键词 多尺度排列熵 偏均值 液压泵 故障特征
在线阅读 下载PDF
EWT多尺度排列熵与GG聚类的轴承故障辨识方法 被引量:21
18
作者 赵荣珍 李霁蒲 邓林峰 《振动.测试与诊断》 EI CSCD 北大核心 2019年第2期416-423,451,共9页
针对滚动轴承故障信号具有非线性、非平稳性特点导致的故障类别难以辨识问题,提出一种基于经验小波变换、多尺度排列熵、GG(Gath-Geva,简称GG)聚类算法相结合的故障诊断方法。首先,采用经验小波变换对滚动轴承的原始信号进行分解、得到... 针对滚动轴承故障信号具有非线性、非平稳性特点导致的故障类别难以辨识问题,提出一种基于经验小波变换、多尺度排列熵、GG(Gath-Geva,简称GG)聚类算法相结合的故障诊断方法。首先,采用经验小波变换对滚动轴承的原始信号进行分解、得到若干个固有模态分量,初步提取滚动轴承的状态特征值;其次,通过相关性分析选择最优模态分量,并在多个尺度下计算其排列熵值;最后,运用主成分分析对高维熵值特征向量进行可视化降维、并输入到GG聚类算法中,实现对滚动轴承的故障辨识。与其他模式组合方法进行比较的结果表明,本研究提出的故障辨识方法具有聚类结果的类内紧致性更好的优点。 展开更多
关键词 经验小波变换 多尺度排列熵 相关性分析 GG聚类
在线阅读 下载PDF
一种基于多尺度和改进支持向量机的光纤陀螺温度漂移建模与补偿方法 被引量:15
19
作者 王威 陈熙源 《中国惯性技术学报》 EI CSCD 北大核心 2016年第6期793-797,共5页
为了提升光纤陀螺温度漂移模型建模的准确性及补偿的效果,提出了一种基于改进支持向量机的多尺度建模和回归方法。首先分析了造成光纤陀螺温度漂移的关键因素,给出了建模的属性参数和温度试验。然后根据经验模态分解得到的本征模态函数... 为了提升光纤陀螺温度漂移模型建模的准确性及补偿的效果,提出了一种基于改进支持向量机的多尺度建模和回归方法。首先分析了造成光纤陀螺温度漂移的关键因素,给出了建模的属性参数和温度试验。然后根据经验模态分解得到的本征模态函数排列熵的变化趋势,得出了回归精度和熵之间的变化关系,进而提出了基于信号分解的多尺度回归方法。为了提高上述多尺度回归算法的适应性,在传统支持向量机的基础上,提出了基于组合核函数的支持向量机回归算法,以适应不同特性的回归数据集。为了进一步提高回归精度,基于降低回归数据复杂度的分段回归思想,在上述多尺度回归的基础上提出了双-多尺度回归,并验证了方法的有效性。最后,将提出的算法以实际的光纤陀螺温度漂移数据进行验证,结果表明,相比于传统的支持向量机和反向传播神经网络具有更好的回归精度,温度漂移模型也更加精确,以均方误差指标为例,回归精度提升了两个数量级。 展开更多
关键词 经验模态分解 排列熵 多尺度 支持向量机
在线阅读 下载PDF
改进EWT_MPE模型在矿山微震信号特征提取中的应用 被引量:7
20
作者 程铁栋 易其文 +4 位作者 吴义文 戴聪聪 蔡改贫 杨丽荣 尹宝勇 《振动与冲击》 EI CSCD 北大核心 2021年第9期92-101,共10页
针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用... 针对矿山微震与爆破振动信号难以自动辨识的问题,提出了一种基于改进EWTMPE(经验小波变换多尺度排列熵)的信号特征提取方法,并应用于矿山微震信号特征提取中。针对EWT在以往处理复杂信号频谱出现的过切分问题提出了新的改进方法,并采用仿真信号验证了改进算法的可行性和准确性。将实际采集到的微震与爆破信号进行改进EWT分解,借助相关性分析从分解得到的本征模态函数(intrinsic mode function,IMF)分量中筛选出最优分量IMF1~IMF5。进而将筛选到的IMF分量进行重构,并计算重构信号的MPE值。应用GK模糊聚类算法对微震与爆破振动信号进行分类识别。结果表明,微震信号的MPE值要小于爆破信号的MPE值,且当嵌入维数m=5,尺度因子s=12,延迟时间τ=1时,两种信号的MPE值差异最大。基于改进EWT_MPE_GK模糊聚类算法的分类识别准确率达到93.5%,平均模糊熵(E)更接近0、分类系数(C)更接近1,与传统EWT_MPE_GK模糊聚类和EMD_MPE_GK模糊聚类相比,其聚类效果更优、识别准确率分别提高了3%和5.5%。 展开更多
关键词 经验小波变换 多尺度排列熵 Gustafson-kessel(GK)模糊聚类 特征提取 分类识别
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部