为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参...为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。展开更多
This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kut...This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.展开更多
文摘为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。
文摘This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.