Objective:Osteoarthritis(OA)and sarcopenia are significant health concerns in the elderly,substantially impacting their daily activities and quality of life.However,the relationship between them remains poorly underst...Objective:Osteoarthritis(OA)and sarcopenia are significant health concerns in the elderly,substantially impacting their daily activities and quality of life.However,the relationship between them remains poorly understood.This study aims to uncover common biomarkers and pathways associated with both OA and sarcopenia.Methods:Gene expression profiles related to OA and sarcopenia were retrieved from the Gene Expression Omnibus(GEO)database.Differentially expressed genes(DEGs)between disease and control groups were identified using R software.Common DEGs were extracted via Venn diagram analysis.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted to identify biological processes and pathways associated with shared DEGs.Protein-protein interaction(PPI)networks were constructed,and candidate hub genes were ranked using the maximal clique centrality(MCC)algorithm.Further validation of hub gene expression was performed using 2 independent datasets.Receiver operating characteristic(ROC)curve analysis was used to evaluate the predictive value of key genes for OA and sarcopenia.Mouse models of OA and sarcopenia were established.Hematoxylin-eosin and Safranin O/Fast Green staining were used to validate the OA model.The sarcopenia model was validated via rotarod testing and quadriceps muscle mass measurement.Real-time reverse transcription PCR(real-time RT-PCR)was employed to assess the mRNA expression levels of candidate key genes in both models.Gene set enrichment analysis(GSEA)was conducted to identify pathways associated with the selected shared key genes in both diseases.Results:A total of 89 common DEGs were identified in the gene expression profiles of OA and sarcopenia,including 76 upregulated and 13 downregulated genes.These 89 DEGs were significantly enriched in protein digestion and absorption,the PI3K-Akt signaling pathway,and extracellular matrix-receptor interaction.PPI network analysis and MCC algorithm analysis of the 89 common DEGs identified the top 17 candidate hub genes.Based on the differential expression analysis of these 17 candidate hub genes in the validation datasets,AEBP1 and COL8A2 were ultimately selected as the common key genes for both diseases,both of which showed a significant upregulation trend in the disease groups(all P<0.05).The value of area under the curve(AUC)for AEBP1 and COL8A2 in the OA and sarcopenia datasets were all greater than 0.7,indicating that both genes have potential value in predicting OA and sarcopenia.Real-time RT-PCR results showed that the mRNA expression levels of AEBP1 and COL8A2 were significantly upregulated in the disease groups(all P<0.05),consistent with the results observed in the bioinformatics analysis.GSEA revealed that AEBP1 and COL8A2 were closely related to extracellular matrix-receptor interaction,ribosome,and oxidative phosphorylation in OA and sarcopenia.Conclusion:AEBP1 and COL8A2 have the potential to serve as common biomarkers for OA and sarcopenia.The extracellular matrix-receptor interaction pathway may represent a potential target for the prevention and treatment of both OA and sarcopenia.展开更多
Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were ra...Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were randomized equally into control group and heat stress group.After exposure to 32℃for 2 weeks in the latter group,the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry.In the cell experiments,cultured rat thoracic aortic endothelial cells(RTAECs)were incubated at 40℃for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA(si-Bmal1)or a negative sequence.In both rat thoracic aorta and RTAECs,the expressions of Bmal1,the cell cycle proteins CDK1,CDK4,CDK6,and cyclin B1,and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting.TUNEL staining was used to detect cell apoptosis in rat thoracic aorta,and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.Results Compared with the control rats,the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1,cyclin B1 and CDK1 in the thoracic aorta(P<0.05).In cultured RTAECs,heat stress caused significant increase of Bmal1,cyclin B1 and CDK1 protein expression levels,which were obviously lowered in cells with prior si-Bmal1 transfection.Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.Conclusion Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells,which can be partly alleviated by suppressing Bmal1 expression.展开更多
Background Verticillium dahliae,a soil-borne fungi,can cause Verticillium wilt,and seriously diminish the yield and quality of cotton.However,the pathogenic mechanism of V.dahliae is complex and not clearly understood...Background Verticillium dahliae,a soil-borne fungi,can cause Verticillium wilt,and seriously diminish the yield and quality of cotton.However,the pathogenic mechanism of V.dahliae is complex and not clearly understood at the moment.This study aimed to identify the high-affinity nicotinic acid transporter genes in V.dahliae.The gene expression profiles in V.dahliae following sensing of root exudates from susceptible and resistant cotton varieties were analyzed.The function of VdNAT1 in the pathogenic process of V.dahliae was studied using the tobacco rattle virus(TRV)-based host-induced gene silencing(HIGS)technique.Results Eight high-affinity nicotinic acid transporter genes were identified from V.dahliae through the bioinformatics method.Each protein contains a conserved major facilitator superfamily(MFS)domain,which belongs to the MFS superfamily.Evolutionary relationship analysis revealed that all 8 genes belong to the anion:cation symporter(ACS)subfamily.All proteins have transmembrane domains,ranging from 7 to 12.The expression levels of most VdNAT genes were significantly increased after induction by root exudates from susceptible cotton varieties.Silencing VdNAT1 gene by HIGS significantly inhibited the accumulation of fungal biomass in cotton plants,and alleviated the disease symptoms of cotton.Conclusions Eight VdNAT genes were identified from V.dahliae,and most VdNAT genes was up-regulated after induced by root exudates from susceptible cotton variety.In addition,VdNAT1 is required for the pathogenicity of V.dahliae.Overall,these findings will facilitate the pathogenic molecular mechanism of V.dahliae and provide candidate genes.展开更多
The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which invo...The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.展开更多
Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein Psb...Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.展开更多
At the early stage,the transcriptome sequencing technique was used to detect the differentially expressed gene CsFK111 between vine cucumber and dwarf cucumber D0462.The gene was cloned,and bioinformatics software too...At the early stage,the transcriptome sequencing technique was used to detect the differentially expressed gene CsFK111 between vine cucumber and dwarf cucumber D0462.The gene was cloned,and bioinformatics software tools were used to analyze and predict the gene family and this gene.There were 30 members of the cucumber F-box gene family.The coding region of the cucumber CsFK111 gene was full-length 1314 bp,which encoded 437 amino acids and was predicted to be located in the nucleus.The protein encoded by this gene was a non-transmembrane protein,and the prediction of the secondary structure showed thatβ-lamellar structure and irregular crimp were dominant.A comparison of the phylogenetic tree showed that it was closest to cantaloupe and belonged to the same branch.The results provided a basis for future study on the regulation mechanism of the CsFK111 gene on cucumber dwarfing and also laid a foundation for further study of FBK family proteins.展开更多
This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regul...This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method.展开更多
Objective:Toxoplasmosis is a zoonotic parasitic disease caused by Toxoplasma gondii(T.gondii),which can lead to complications such as encephalitis and ocular toxoplasmosis.The disease becomes more severe when the host...Objective:Toxoplasmosis is a zoonotic parasitic disease caused by Toxoplasma gondii(T.gondii),which can lead to complications such as encephalitis and ocular toxoplasmosis.The disease becomes more severe when the host’s immune system is compromised.Rhoptry proteins are major virulence factors that enable T.gondii to invade host cells.This study aims to construct a T.gondii rhoptry protein 41(rop41/ROP41)gene knockout strain and preliminarily investigate the biological function of rop41.Methods:Using CRISPR/Cas9 technology,a specific single-guide RNA(sgRNA)for the target gene was designed and linked to a recombinant plasmid.Homologous fragments were fused with a pyrimethamine resistance gene for selection purposes.The recombinant plasmid and the homologous fragments were electroporated into T.gondii,and PCR identification was performed after drug selection and monoclonal screening.Plaque assays were used to comprehensively assess whether rop41 affected the growth and proliferation of T.gondii in host cells.Invasion and proliferation assays were conducted to evaluate the invasion ability of the knockout strain into host cells and its intracellular proliferation capacity.The STRING database was utilized to construct a protein-protein interaction(PPI)network,and functional enrichment analysis was performed to predict the signaling pathways in which ROP41 might be involved.Results:The T.gondii rop41 gene knockout strain(RHΔku80Δrop41)was successfully constructed and stably inherited.Plaque assays showed that compared with the parental strain,the number of plaques formed by the rop41 gene knockout strain did not significantly decrease,but the reduction in plaque size was statistically significant(P<0.05).After the rop41 gene was knocked out,the invasion ability of T.gondii was reduced,but there was no statistically significant difference in its proliferation ability(P>0.05).The PPI network revealed that ROP41 was associated with other protein kinases and autophagy related proteins.Enrichment analysis indicated that proteins interacting with ROP41 may be involved in signal transduction,biosynthesis,metabolism,and autophagy-related pathways and could be components of various kinase complexes and phagocytic vesicles.Conclusion:The T.gondii RHΔku80Δrop41 strain has been successfully constructed.ROP41 primarily affects the ability of T.gondii to invade host cells and may play a role in signal transduction and autophagy-related pathways between T.gondii and the host.展开更多
Carcass,meat quality,and feather-down traits of 123 geese from an F_1 population of Wanxi White goose(male parent)and Sichuan White goose(female parent)were measured,and an additional 12 compound indices were construc...Carcass,meat quality,and feather-down traits of 123 geese from an F_1 population of Wanxi White goose(male parent)and Sichuan White goose(female parent)were measured,and an additional 12 compound indices were constructed from the single traits,using factor analysis.The coding region of melanocortin receptor-4(MC4R)gene was amplified by PCR and the products were digested with four restriction endonucleases Hinf I,Ear I,Pst I,and Pvu II to detect restriction fragment length polymorphism(RFLP)in the MC4R gene,to analyze its associations with the traits.The only RFLP was exposed by digesting with Hinf I indicating two genotypes,HH and Hh,with frequencies of allele H and h being 0.8902 and 0.1098 in the F_1 population.Significant effects of genotype HH were found on carcass weight,eviscerated weight(with giblet),liver weight,heart weight,stomach percentage,abdominal fat percentage,breast muscle drip water loss and down proportion and many of the compound indices,and all genotypic contribution percentages(CP,genotypic effect on the population mean)were between-5%and 5%;effects of genotype Hh with the MC4R gene mutation,were not significant.Effects of genotype Hh were significant on two of the compound indices related to fat deposition:the fat index(CP=3.314%,P<0.05)and fatty acid quality(CP=1.218%,P<0.05).展开更多
The purpose of this study was to evaluate the effect and the potential mechanism of administering a pGRF gene plasmid on the growth and immunological function of weanling piglets subjected to immune-stress.Eighteen we...The purpose of this study was to evaluate the effect and the potential mechanism of administering a pGRF gene plasmid on the growth and immunological function of weanling piglets subjected to immune-stress.Eighteen weanling(Duroc×Landrace×Large White) piglets aged 35 d±2 d and initial BW of 7.86 kg±0.59 kg were randomly assigned to three treatments according to gender and BW by using a single factor design.The three treatments were injections of a pGRF gene plasmid,pGRF gene plasmid followed by challenge with lipopolysaccharide(LPS),and LPS to piglets not receiving the plasmid.Each treatment group consisted of six piglets.The results were as follows:piglets in the pGRF gene plasmid plus LPS treatment had a better growth performance than those only receiving LPS(P【0.05), and F/G of piglets in the pGRF gene plasmid plus LPS group were very slightly lower(P】0.05) than those in the LPS group;serum levels of IGF-1 in the pGRF gene plasmid plus LPS group were significantly higher than those in the LPS group(P【0.05 or P【0.01);serum levels of IgG in the pGRF gene plasmid plus LPS group were higher than those in the LPS group(P【0.05);serum levels of IL-1 and IL-6 in the pGRF gene plasmid plus LPS group were significantly lower than those in the LPS group(P【0.05 or P【0.01).展开更多
Polymorphisms of porcine ob exon 1 and exon 2 among different breeds including Landrace, Duroc, Min pig, Yorkshire pig, double-muscled Yorkshire, Sanjiang pig, wild boar and cross bred pig were analyzed by PCR-SSCP in...Polymorphisms of porcine ob exon 1 and exon 2 among different breeds including Landrace, Duroc, Min pig, Yorkshire pig, double-muscled Yorkshire, Sanjiang pig, wild boar and cross bred pig were analyzed by PCR-SSCP in the current study. Three pairs of primers according to the ob cDNA sequence obtained from GenBank database were designed to amplify the first two exons, which were then genotyped by SSCP. The T to C transversion was found in exon 2, which resulted in 3 genotypes named AA, AB and BB, respectively in these different porcine breeds. There was only genotype of BB in the Min pig, while no allele B was detected in double-muscled Yorkshire, and the 3 genotypes all existed in other breeds. There was significant difference on the genotype frequencies in various breeds. There was a trend that the frequency of allele A was positively associated with muscle ratio distribution on the one hand, and on the other hand, it was linked to the selected direction. So the allele A could be used as a selective marker of high muscle ratio in pig breeding.展开更多
In order to further study functions of the porcine myostatin gene, we analyzed the polymorphisms of porcine myostatin gene in promoter region among different breeds including Yorkshire, Landrace, Duroc, Junmu, Min pig...In order to further study functions of the porcine myostatin gene, we analyzed the polymorphisms of porcine myostatin gene in promoter region among different breeds including Yorkshire, Landrace, Duroc, Junmu, Min pig and Sanjiang white pig by PCR-RFLPs. The allele T dominated in the imported lean-type pig breeds such as Yorkshire, Landrace and Duroc. No allele A was detected in Junmu and Sanjiang white pig, and the frequencies of three genotypes were about equal in Min pig. The result using X2 analysis showed that the distribution of three genotypes was related to pig breeds.展开更多
Sea Island cotton(Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether
基金supported by the National Natural Science Foundation of China(82060418).
文摘Objective:Osteoarthritis(OA)and sarcopenia are significant health concerns in the elderly,substantially impacting their daily activities and quality of life.However,the relationship between them remains poorly understood.This study aims to uncover common biomarkers and pathways associated with both OA and sarcopenia.Methods:Gene expression profiles related to OA and sarcopenia were retrieved from the Gene Expression Omnibus(GEO)database.Differentially expressed genes(DEGs)between disease and control groups were identified using R software.Common DEGs were extracted via Venn diagram analysis.Gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analyses were conducted to identify biological processes and pathways associated with shared DEGs.Protein-protein interaction(PPI)networks were constructed,and candidate hub genes were ranked using the maximal clique centrality(MCC)algorithm.Further validation of hub gene expression was performed using 2 independent datasets.Receiver operating characteristic(ROC)curve analysis was used to evaluate the predictive value of key genes for OA and sarcopenia.Mouse models of OA and sarcopenia were established.Hematoxylin-eosin and Safranin O/Fast Green staining were used to validate the OA model.The sarcopenia model was validated via rotarod testing and quadriceps muscle mass measurement.Real-time reverse transcription PCR(real-time RT-PCR)was employed to assess the mRNA expression levels of candidate key genes in both models.Gene set enrichment analysis(GSEA)was conducted to identify pathways associated with the selected shared key genes in both diseases.Results:A total of 89 common DEGs were identified in the gene expression profiles of OA and sarcopenia,including 76 upregulated and 13 downregulated genes.These 89 DEGs were significantly enriched in protein digestion and absorption,the PI3K-Akt signaling pathway,and extracellular matrix-receptor interaction.PPI network analysis and MCC algorithm analysis of the 89 common DEGs identified the top 17 candidate hub genes.Based on the differential expression analysis of these 17 candidate hub genes in the validation datasets,AEBP1 and COL8A2 were ultimately selected as the common key genes for both diseases,both of which showed a significant upregulation trend in the disease groups(all P<0.05).The value of area under the curve(AUC)for AEBP1 and COL8A2 in the OA and sarcopenia datasets were all greater than 0.7,indicating that both genes have potential value in predicting OA and sarcopenia.Real-time RT-PCR results showed that the mRNA expression levels of AEBP1 and COL8A2 were significantly upregulated in the disease groups(all P<0.05),consistent with the results observed in the bioinformatics analysis.GSEA revealed that AEBP1 and COL8A2 were closely related to extracellular matrix-receptor interaction,ribosome,and oxidative phosphorylation in OA and sarcopenia.Conclusion:AEBP1 and COL8A2 have the potential to serve as common biomarkers for OA and sarcopenia.The extracellular matrix-receptor interaction pathway may represent a potential target for the prevention and treatment of both OA and sarcopenia.
文摘Objective To investigate the structural changes of rat thoracic aorta and changes in expression levels of Bmal1 and cyclins in thoracic aorta endothelial cells following heat stress.Methods Twenty male SD rats were randomized equally into control group and heat stress group.After exposure to 32℃for 2 weeks in the latter group,the rats were examined for histopathological changes and Bmal1 expression in the thoracic aorta using HE staining and immunohistochemistry.In the cell experiments,cultured rat thoracic aortic endothelial cells(RTAECs)were incubated at 40℃for 12 h with or without prior transfection with a Bmal1-specific small interfering RNA(si-Bmal1)or a negative sequence.In both rat thoracic aorta and RTAECs,the expressions of Bmal1,the cell cycle proteins CDK1,CDK4,CDK6,and cyclin B1,and apoptosis-related proteins Bax and Bcl-2 were detected using Western blotting.TUNEL staining was used to detect cell apoptosis in rat thoracic aorta,and the changes in cell cycle distribution and apoptosis in RTAECs were analyzed with flow cytometry.Results Compared with the control rats,the rats exposed to heat stress showed significantly increased blood pressures and lowered heart rate with elastic fiber disruption and increased expressions of Bmal1,cyclin B1 and CDK1 in the thoracic aorta(P<0.05).In cultured RTAECs,heat stress caused significant increase of Bmal1,cyclin B1 and CDK1 protein expression levels,which were obviously lowered in cells with prior si-Bmal1 transfection.Bmal1 knockdown also inhibited heat stress-induced increase of apoptosis in RTAECs as evidenced by decreased expression of Bax and increased expression of Bcl-2.Conclusion Heat stress upregulates Bmal1 expression and causes alterations in expressions of cyclins to trigger apoptosis of rat thoracic aorta endothelial cells,which can be partly alleviated by suppressing Bmal1 expression.
基金supported by National Natural Science Foundation of China(No.32160615).
文摘Background Verticillium dahliae,a soil-borne fungi,can cause Verticillium wilt,and seriously diminish the yield and quality of cotton.However,the pathogenic mechanism of V.dahliae is complex and not clearly understood at the moment.This study aimed to identify the high-affinity nicotinic acid transporter genes in V.dahliae.The gene expression profiles in V.dahliae following sensing of root exudates from susceptible and resistant cotton varieties were analyzed.The function of VdNAT1 in the pathogenic process of V.dahliae was studied using the tobacco rattle virus(TRV)-based host-induced gene silencing(HIGS)technique.Results Eight high-affinity nicotinic acid transporter genes were identified from V.dahliae through the bioinformatics method.Each protein contains a conserved major facilitator superfamily(MFS)domain,which belongs to the MFS superfamily.Evolutionary relationship analysis revealed that all 8 genes belong to the anion:cation symporter(ACS)subfamily.All proteins have transmembrane domains,ranging from 7 to 12.The expression levels of most VdNAT genes were significantly increased after induction by root exudates from susceptible cotton varieties.Silencing VdNAT1 gene by HIGS significantly inhibited the accumulation of fungal biomass in cotton plants,and alleviated the disease symptoms of cotton.Conclusions Eight VdNAT genes were identified from V.dahliae,and most VdNAT genes was up-regulated after induced by root exudates from susceptible cotton variety.In addition,VdNAT1 is required for the pathogenicity of V.dahliae.Overall,these findings will facilitate the pathogenic molecular mechanism of V.dahliae and provide candidate genes.
文摘The advent of gene editing represents one of the most transformative breakthroughs in life science,making genome manipulation more accessible than ever before.While traditional CRISPR/Cas-based gene editing,which involves double-strand DNA breaks(DSBs),excels at gene disruption,it is less effective for accurate gene modification.The limitation arises because DSBs are primarily repaired via non-homologous end joining(NHEJ),which tends to introduce indels at the break site.While homology directed repair(HDR)can achieve precise editing when a donor DNA template is provided,the reliance on DSBs often results in unintended genome damage.HDR is restricted to specific cell cycle phases,limiting its application.Currently,gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR.The development of innovative systems,such as base editing,prime editing,and CRISPR-associated transposases(CASTs),now allow for precise editing ranging from single nucleotides to large DNA fragments.Base editors(BEs)enable the direct conversion of one nucleotide to another,and prime editors(PEs)further expand gene editing capabilities by allowing for the insertion,deletion,or alteration of small DNA fragments.The CAST system,a recent innovation,allows for the precise insertion of large DNA fragments at specific genomic locations.In recent years,the optimization of these precise gene editing tools has led to significant improvements in editing efficiency,specificity,and versatility,with advancements such as the creation of base editors for nucleotide transversions,enhanced prime editing systems for more efficient and precise modifications,and refined CAST systems for targeted large DNA insertions,expanding the range of applications for these tools.Concurrently,these advances are complemented by significant improvements in in vivo delivery methods,which have paved the way for therapeutic application of precise gene editing tools.Effective delivery systems are critical for the success of gene therapies,and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing.For instance,adeno-associated viruses(AAVs)are widely used due to their high transfection efficiency and low immunogenicity,though challenges such as limited cargo capacity and potential for immune responses remain.Non-viral delivery systems,including lipid nanoparticles(LNPs),offer an alternative with lower immunogenicity and higher payload capacity,although their transfection efficiency can be lower.The therapeutic potential of these precise gene editing technologies is vast,particularly in treating genetic disorders.Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy,liver disease,and hereditary hearing loss.These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions.Meanwhile,challenges remain,such as optimizing the safety and specificity of gene editing tools,improving delivery systems,and overcoming off-target effects,all of which are critical for their successful application in clinical settings.In summary,the continuous evolution of precise gene editing technologies,combined with advancements in delivery systems,is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.
基金supported by National Natural Science Foundation of China(32060466)Chinese Academy of Agricultural Sciences。
文摘Background Photosystem II(PSII)constitutes an intricate assembly of protein pigments,featuring extrinsic and intrinsic polypeptides within the photosynthetic membrane.The low-molecular-weight transmembrane protein PsbX has been identified in PSII,which is associated with the oxygen-evolving complex.The expression of PsbX gene protein is regulated by light.PsbX’s central role involves the regulation of PSII,facilitating the binding of quinone molecules to the Qb(PsbA)site,and it additionally plays a crucial role in optimizing the efficiency of photosynthesis.Despite these insights,a comprehensive understanding of the PsbX gene’s functions has remained elusive.Results In this study,we identified ten PsbX genes in Gossypium hirsutum L.The phylogenetic analysis results showed that 40 genes from nine species were classified into one clade.The resulting sequence logos exhibited substantial conservation across the N and C terminals at multiple sites among all Gossypium species.Furthermore,the ortholo-gous/paralogous,Ka/Ks ratio revealed that cotton PsbX genes subjected to positive as well as purifying selection pressure might lead to limited divergence,which resulted in the whole genome and segmental duplication.The expression patterns of GhPsbX genes exhibited variations across specific tissues,as indicated by the analysis.Moreover,the expression of GhPsbX genes could potentially be regulated in response to salt,intense light,and drought stresses.Therefore,GhPsbX genes may play a significant role in the modulation of photosynthesis under adverse abiotic conditions.Conclusion We examined the structure and function of PsbX gene family very first by using comparative genom-ics and systems biology approaches in cotton.It seems that PsbX gene family plays a vital role during the growth and development of cotton under stress conditions.Collectively,the results of this study provide basic information to unveil the molecular and physiological function of PsbX genes of cotton plants.
基金Supported by the National Natural Science Foundation of China(32272724)the National Science Foundation of Heilongjiang Province,China(LH2019C033)。
文摘At the early stage,the transcriptome sequencing technique was used to detect the differentially expressed gene CsFK111 between vine cucumber and dwarf cucumber D0462.The gene was cloned,and bioinformatics software tools were used to analyze and predict the gene family and this gene.There were 30 members of the cucumber F-box gene family.The coding region of the cucumber CsFK111 gene was full-length 1314 bp,which encoded 437 amino acids and was predicted to be located in the nucleus.The protein encoded by this gene was a non-transmembrane protein,and the prediction of the secondary structure showed thatβ-lamellar structure and irregular crimp were dominant.A comparison of the phylogenetic tree showed that it was closest to cantaloupe and belonged to the same branch.The results provided a basis for future study on the regulation mechanism of the CsFK111 gene on cucumber dwarfing and also laid a foundation for further study of FBK family proteins.
基金funded by the National Natural Science Foundation of China(62176147)the Science and Technology Planning Project of Guangdong Province of China,the State Key Lab of Digital Manufacturing Equipment and Technology(DMETKF2019020)the National Defense Technology Innovation Special Zone Project(193-A14-226-01-01)。
文摘This study proposes a method for uniformly revolving swarm robots to entrap multiple targets,which is based on a gene regulatory network,an adaptive decision mechanism,and an improved Vicsek-model.Using the gene regulatory network method,the robots can generate entrapping patterns according to the environmental input,including the positions of the targets and obstacles.Next,an adaptive decision mechanism is proposed,allowing each robot to choose the most well-adapted capture point on the pattern,based on its environment.The robots employ an improved Vicsek-model to maneuver to the planned capture point smoothly,without colliding with other robots or obstacles.The proposed decision mechanism,combined with the improved Vicsek-model,can form a uniform entrapment shape and create a revolving effect around targets while entrapping them.This study also enables swarm robots,with an adaptive pattern formation,to entrap multiple targets in complex environments.Swarm robots can be deployed in the military field of unmanned aerial vehicles’(UAVs)entrapping multiple targets.Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory network method.
基金supported by the National Natural Science Foundation of China(32170510)the Innovation Training Program of Central South University(20240026020055),China.
文摘Objective:Toxoplasmosis is a zoonotic parasitic disease caused by Toxoplasma gondii(T.gondii),which can lead to complications such as encephalitis and ocular toxoplasmosis.The disease becomes more severe when the host’s immune system is compromised.Rhoptry proteins are major virulence factors that enable T.gondii to invade host cells.This study aims to construct a T.gondii rhoptry protein 41(rop41/ROP41)gene knockout strain and preliminarily investigate the biological function of rop41.Methods:Using CRISPR/Cas9 technology,a specific single-guide RNA(sgRNA)for the target gene was designed and linked to a recombinant plasmid.Homologous fragments were fused with a pyrimethamine resistance gene for selection purposes.The recombinant plasmid and the homologous fragments were electroporated into T.gondii,and PCR identification was performed after drug selection and monoclonal screening.Plaque assays were used to comprehensively assess whether rop41 affected the growth and proliferation of T.gondii in host cells.Invasion and proliferation assays were conducted to evaluate the invasion ability of the knockout strain into host cells and its intracellular proliferation capacity.The STRING database was utilized to construct a protein-protein interaction(PPI)network,and functional enrichment analysis was performed to predict the signaling pathways in which ROP41 might be involved.Results:The T.gondii rop41 gene knockout strain(RHΔku80Δrop41)was successfully constructed and stably inherited.Plaque assays showed that compared with the parental strain,the number of plaques formed by the rop41 gene knockout strain did not significantly decrease,but the reduction in plaque size was statistically significant(P<0.05).After the rop41 gene was knocked out,the invasion ability of T.gondii was reduced,but there was no statistically significant difference in its proliferation ability(P>0.05).The PPI network revealed that ROP41 was associated with other protein kinases and autophagy related proteins.Enrichment analysis indicated that proteins interacting with ROP41 may be involved in signal transduction,biosynthesis,metabolism,and autophagy-related pathways and could be components of various kinase complexes and phagocytic vesicles.Conclusion:The T.gondii RHΔku80Δrop41 strain has been successfully constructed.ROP41 primarily affects the ability of T.gondii to invade host cells and may play a role in signal transduction and autophagy-related pathways between T.gondii and the host.
基金supported by a loth 5-year personwith-ability prject of Anhui province,Natural Science Foundation of Anhui Educational Institution(No.2006KJ/69B)Key Scientific Project of Anhui Provincial Department of Science and Technology(No.07020303055,08010302070)
文摘Carcass,meat quality,and feather-down traits of 123 geese from an F_1 population of Wanxi White goose(male parent)and Sichuan White goose(female parent)were measured,and an additional 12 compound indices were constructed from the single traits,using factor analysis.The coding region of melanocortin receptor-4(MC4R)gene was amplified by PCR and the products were digested with four restriction endonucleases Hinf I,Ear I,Pst I,and Pvu II to detect restriction fragment length polymorphism(RFLP)in the MC4R gene,to analyze its associations with the traits.The only RFLP was exposed by digesting with Hinf I indicating two genotypes,HH and Hh,with frequencies of allele H and h being 0.8902 and 0.1098 in the F_1 population.Significant effects of genotype HH were found on carcass weight,eviscerated weight(with giblet),liver weight,heart weight,stomach percentage,abdominal fat percentage,breast muscle drip water loss and down proportion and many of the compound indices,and all genotypic contribution percentages(CP,genotypic effect on the population mean)were between-5%and 5%;effects of genotype Hh with the MC4R gene mutation,were not significant.Effects of genotype Hh were significant on two of the compound indices related to fat deposition:the fat index(CP=3.314%,P<0.05)and fatty acid quality(CP=1.218%,P<0.05).
文摘The purpose of this study was to evaluate the effect and the potential mechanism of administering a pGRF gene plasmid on the growth and immunological function of weanling piglets subjected to immune-stress.Eighteen weanling(Duroc×Landrace×Large White) piglets aged 35 d±2 d and initial BW of 7.86 kg±0.59 kg were randomly assigned to three treatments according to gender and BW by using a single factor design.The three treatments were injections of a pGRF gene plasmid,pGRF gene plasmid followed by challenge with lipopolysaccharide(LPS),and LPS to piglets not receiving the plasmid.Each treatment group consisted of six piglets.The results were as follows:piglets in the pGRF gene plasmid plus LPS treatment had a better growth performance than those only receiving LPS(P【0.05), and F/G of piglets in the pGRF gene plasmid plus LPS group were very slightly lower(P】0.05) than those in the LPS group;serum levels of IGF-1 in the pGRF gene plasmid plus LPS group were significantly higher than those in the LPS group(P【0.05 or P【0.01);serum levels of IgG in the pGRF gene plasmid plus LPS group were higher than those in the LPS group(P【0.05);serum levels of IL-1 and IL-6 in the pGRF gene plasmid plus LPS group were significantly lower than those in the LPS group(P【0.05 or P【0.01).
文摘Polymorphisms of porcine ob exon 1 and exon 2 among different breeds including Landrace, Duroc, Min pig, Yorkshire pig, double-muscled Yorkshire, Sanjiang pig, wild boar and cross bred pig were analyzed by PCR-SSCP in the current study. Three pairs of primers according to the ob cDNA sequence obtained from GenBank database were designed to amplify the first two exons, which were then genotyped by SSCP. The T to C transversion was found in exon 2, which resulted in 3 genotypes named AA, AB and BB, respectively in these different porcine breeds. There was only genotype of BB in the Min pig, while no allele B was detected in double-muscled Yorkshire, and the 3 genotypes all existed in other breeds. There was significant difference on the genotype frequencies in various breeds. There was a trend that the frequency of allele A was positively associated with muscle ratio distribution on the one hand, and on the other hand, it was linked to the selected direction. So the allele A could be used as a selective marker of high muscle ratio in pig breeding.
基金Key Items of Plan of Science and Technology of Heilongjiang Province (CGB01B104)
文摘In order to further study functions of the porcine myostatin gene, we analyzed the polymorphisms of porcine myostatin gene in promoter region among different breeds including Yorkshire, Landrace, Duroc, Junmu, Min pig and Sanjiang white pig by PCR-RFLPs. The allele T dominated in the imported lean-type pig breeds such as Yorkshire, Landrace and Duroc. No allele A was detected in Junmu and Sanjiang white pig, and the frequencies of three genotypes were about equal in Min pig. The result using X2 analysis showed that the distribution of three genotypes was related to pig breeds.
文摘Sea Island cotton(Gossypium barbadense L.) has been highly valued in Verticillium wilt resistance and many fiber qualities including fiber length,strength,and fineness.To identify whether
基金This work was supported by a grant from the Department of Science and Technology, Sichuan, P.R. China This work was supported by a grant from the Department of Science and Technology, Sichuan, China. We would like to thank JIN Mei, LUO Dan, SANG Mu, WANG Mu, and Luo-sang-Jian-cai from Medical School of Tibet university for their assistance with the data collection.