Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color...Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.展开更多
线性局部切空间排列算法(Linear local tangent space alignment,LLTSA)是能够较好应用于模式识别问题的降维方法,但由于其属于无监督的降维方法且在降维过程中只使用全局统一的邻域参数,使得在对高维数据集进行约简时,不能利用部分样...线性局部切空间排列算法(Linear local tangent space alignment,LLTSA)是能够较好应用于模式识别问题的降维方法,但由于其属于无监督的降维方法且在降维过程中只使用全局统一的邻域参数,使得在对高维数据集进行约简时,不能利用部分样本的类别标签信息且不能根据样本空间分布的变化调整邻域参数。针对上述问题,提出了一种半监督邻域自适应线性局部切空间排列算法(Semi-supervised neighborhood self-adaptive LLTSA,SSNA-LLTSA)。该算法在LLTSA的基础上,利用部分标签信息来调整样本点与点之间的距离以形成新的距离矩阵来完成邻域构建,同时根据每个数据样本点邻域的概率密度自适应地调整邻域参数,进而得到更好的降维效果。经典的三维流形、UCI典型数据集模式识别和轴承故障诊断的实验结果表明,该算法克服了LLTSA算法无监督和使用全局统一邻域参数的不足,可更有效地寻找数据的低维本质流形,提高了识别准确率,具有一定优势。展开更多
基金Projects(61370200,61672130,61602082) supported by the National Natural Science Foundation of ChinaProject(1721203049-1) supported by the Science and Technology Research and Development Plan Project of Handan,Hebei Province,China
文摘Two lines of image representation based on multiple features fusion demonstrate excellent performance in image retrieval.However,there are some problems in both of them:1)the methods defining directly texture in color space put more emphasis on color than texture feature;2)the methods extract several features respectively and combine them into a vector,in which bad features may lead to worse performance after combining directly good and bad features.To address the problems above,a novel hybrid framework for color image retrieval through combination of local and global features achieves higher retrieval precision.The bag-of-visual words(BoW)models and color intensity-based local difference patterns(CILDP)are exploited to capture local and global features of an image.The proposed fusion framework combines the ranking results of BoW and CILDP through graph-based density method.The performance of our proposed framework in terms of average precision on Corel-1K database is86.26%,and it improves the average precision by approximately6.68%and12.53%over CILDP and BoW,respectively.Extensive experiments on different databases demonstrate the effectiveness of the proposed framework for image retrieval.
文摘线性局部切空间排列算法(Linear local tangent space alignment,LLTSA)是能够较好应用于模式识别问题的降维方法,但由于其属于无监督的降维方法且在降维过程中只使用全局统一的邻域参数,使得在对高维数据集进行约简时,不能利用部分样本的类别标签信息且不能根据样本空间分布的变化调整邻域参数。针对上述问题,提出了一种半监督邻域自适应线性局部切空间排列算法(Semi-supervised neighborhood self-adaptive LLTSA,SSNA-LLTSA)。该算法在LLTSA的基础上,利用部分标签信息来调整样本点与点之间的距离以形成新的距离矩阵来完成邻域构建,同时根据每个数据样本点邻域的概率密度自适应地调整邻域参数,进而得到更好的降维效果。经典的三维流形、UCI典型数据集模式识别和轴承故障诊断的实验结果表明,该算法克服了LLTSA算法无监督和使用全局统一邻域参数的不足,可更有效地寻找数据的低维本质流形,提高了识别准确率,具有一定优势。