针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;...针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;考虑到图像分块特征的局部相似特性,构建LC-BoVW模型分别对目标图像的显著特征进行统计。然后,基于信息融合思想对特征统计量进行融合,形成图像的判别性特征并输入到分类器中进行物料的精确识别。最后,利用自建的5类建筑垃圾物料图像数据集进行实验,实验结果表明,所提算法能够快速有效地实现建筑垃圾物料识别,平均识别准确率可达到97.92%。展开更多
为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征...为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征;最后,将不同尺度、不同方向Gabor图谱提取到的局部二值模式特征进行级联,作为一种新的语音情感特征进行情感识别.柏林库(EMO-DB)及FAU Ai Bo库上的实验结果表明:与已有的韵律、频域、音质特征相比,所提特征的识别率提升3%以上;与声学特征融合后,所提特征的识别率较早期声学特征至少提高5%.因此,利用这种新的语音情感特征可以有效识别不同种类的情感语音.展开更多
文摘针对建筑垃圾物料的种类多、形貌易混淆等问题,构建了一种基于局部约束的视觉词袋(local constraint-bag of visual words,LC-BoVW)模型的建筑垃圾物料识别算法。首先,对建筑垃圾物料图像分块,分别提取局部颜色特征和局部二值模式特征;考虑到图像分块特征的局部相似特性,构建LC-BoVW模型分别对目标图像的显著特征进行统计。然后,基于信息融合思想对特征统计量进行融合,形成图像的判别性特征并输入到分类器中进行物料的精确识别。最后,利用自建的5类建筑垃圾物料图像数据集进行实验,实验结果表明,所提算法能够快速有效地实现建筑垃圾物料识别,平均识别准确率可达到97.92%。
文摘为研究信号相关性在语音情感识别中的作用,提出了一种面向语音情感识别的语谱图特征提取算法.首先,对语谱图进行处理,得到归一化后的语谱图灰度图像;然后,计算不同尺度、不同方向的Gabor图谱,并采用局部二值模式提取Gabor图谱的纹理特征;最后,将不同尺度、不同方向Gabor图谱提取到的局部二值模式特征进行级联,作为一种新的语音情感特征进行情感识别.柏林库(EMO-DB)及FAU Ai Bo库上的实验结果表明:与已有的韵律、频域、音质特征相比,所提特征的识别率提升3%以上;与声学特征融合后,所提特征的识别率较早期声学特征至少提高5%.因此,利用这种新的语音情感特征可以有效识别不同种类的情感语音.