期刊文献+

使用多尺度LBP特征描述与识别人脸 被引量:52

Face description and recognition using multi-scale LBP feature
在线阅读 下载PDF
导出
摘要 提出了一种基于多尺度LBP特征的人脸描述与识别算法。对原始人脸图像进行二级小波分解,并采用LBP算子分别计算两幅低频逼近图像的LBP特征谱;将LBP特征谱划分为若干个互不重叠的特征区域,然后分别进行直方图统计。最后,将所有区域的LBP直方图序列连接起来得到多尺度LBP特征,将其作为人脸的鉴别特征用于分类识别。所提出算法在ORL人脸数据库中取得了高达99%的人脸识别率。实验分析表明,多尺度LBP特征具有较强的人脸图像描述能力和可鉴别性,且对人脸表情及位置的变化具有较高的鲁棒性。 In order to improve the accuracy and robustness of face recognition, a face description and recognition method based on multi-scale Local Binary Pattern(LBP) feature is proposed. The original face image is decomposed into two levels by wavelet analysis, and the LBP operator is applied to two approximate images respectively to extract LBP feature map. Then, the two maps are divided into several regions,in which the histograms are computed and linked to get a multi-scale LBP feature. Fi- nally, the multi-scale LBP feature is used as the face descriptor for classification and recognition. The experimental results on ORL face database show that the proposed method can achieve high face recognition rate up to 99% ,which shows that the multi-scale LBP feature has highly descriptive and discriminable abilities for human face and is robust to face expressions and position variations.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2008年第4期696-705,共10页 Optics and Precision Engineering
基金 重庆市自然科学基金资助项目(No.CSTCNo.2006BB2152)
关键词 人脸识别 多尺度分析 LBP算子 直方图 face recognition multi-scale analysis Local Binary Pattern(LBP) operator histogram
作者简介 王玮(1979-),男,福建晋江人,博士,主要从事模式识别、图像处理、嵌入式系统等方面的研究。E-mail:weipub@163.com
  • 相关文献

参考文献19

  • 1TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1) : 71- 86.
  • 2ETENMAD K, CHELLAPPA R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America, 1997, 14(8) : 1724-1733.
  • 3ZHANG J Y,FRANGI D, YANG A F, et al.. Two-dimensional PCA.. a new approach to appearance-based face representation and recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26 (1): 131-137.
  • 4HEISELE B, HO P, WU J, et al.. Face recognition: component-based versus global approaches[J]. Computer Vision and Image Understanding, 2003, 91(1/2) : 6-21.
  • 5PENEV P S, ATICK J J. Local feature analysis: a general statistical theory for object representation[J]. Network: Comput. Neural Syst., 1996, 7(3): 477-500.
  • 6李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 7BRUCE V, HANCOCK P J B, BURTON A M. Human Face Perception and Identification[M]. Berlin: Springer-Verlag , 1998:51-72.
  • 8SINHA P, BALAS B, OSTROVSKY Y, et al.. Face recognition by humans: nineteen results all computer vision researchers should know about[J]. IEEE, 2006, 94(11) : 1948-1962.
  • 9ZHAO W, CHELLAPPA R, PHILLIPS P J, et al.. Face recognition : a literature survey[R]. CS-Tech Report- 4167, University of Maryland, 2000.
  • 10LANITIS A, TAYLOR C J, COOTES T F. Automatic face identification system using flexible appearance models [J]. Image Vision Comput. 1995, 13 (5): 393-401.

二级参考文献30

  • 1梁毅雄,龚卫国,潘英俊,李伟红,刘嘉敏,张红梅.基于奇异值分解的人脸识别方法[J].光学精密工程,2004,12(5):543-549. 被引量:40
  • 2ROSIN P L.A note on the least squares fitting of ellipses[J].Pattern Recognition Letters,1993,14:799-808.
  • 3GANDER W,GOLUB G H,STREBEL R.Least-square fitting of circles and ellipses[J].BIT,1994,34:558-578.
  • 4TAUBIN G.Estimation of planar curves,surfaces and non-planar space curves defined by implicit equations,with applications to edge and range image segmentation[J].IEEE Trans.Pattern Analysis and Machine Intelligence,1991,13(11):1 115-1 138.
  • 5BOOKSTEIN F L.Fitting conic sections to scattered data[M].Computer Graphics and Image Processing,1979,9(1):56-71.
  • 6TAKEUCHI K,COLLIER N.Bio-medical entity extraction using support vector machines[C].Proc ACL 2003Workshop on NLP in Biomedicine,Sapporo,2003.
  • 7JOACHIMS T.Learning to classify text using support vector machines:[Dissertation][C].Norwell,MA,USA:Kluwer Academic Publishers,2002.
  • 8ORAZIO T D,LEO M,CICIRELLI G,et al.An algorithm for real time eye detection in face images[C].Proceedings of the 17^th International Conference on Pattern Recognition,Cambridge,2004.
  • 9Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 10Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.

共引文献100

同被引文献492

引证文献52

二级引证文献335

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部