期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于半监督邻域自适应LLTSA算法的故障诊断 被引量:9
1
作者 房立清 吕岩 +1 位作者 张前图 齐子元 《振动与冲击》 EI CSCD 北大核心 2017年第13期189-194,237,共7页
为了有效利用振动信号进行故障诊断,提出了一种基于半监督邻域自适应线性局部切空间排列(SSNALLTSA)算法的故障诊断方法。从多域提取振动信号的混合特征,构建原始高维特征集。利用半监督邻域自适应线性局部切空间排列算法对原始特征集... 为了有效利用振动信号进行故障诊断,提出了一种基于半监督邻域自适应线性局部切空间排列(SSNALLTSA)算法的故障诊断方法。从多域提取振动信号的混合特征,构建原始高维特征集。利用半监督邻域自适应线性局部切空间排列算法对原始特征集进行维数约简,提取出辨识性较高的敏感特征子集。将得到的低维特征输入SVM分类器进行识别,判断故障类型。液压泵故障诊断实验结果表明,该算法克服了LLTSA无监督和使用全局统一邻域参数的不足,可更有效地寻找数据的低维本质流形,提高了识别准确率,具有一定优势。 展开更多
关键词 故障诊断 维数约简 半监督 邻域自适应 lltsa
在线阅读 下载PDF
有监督LLTSA特征约简旋转机械故障诊断 被引量:11
2
作者 苏祖强 汤宝平 +1 位作者 邓蕾 尹爱军 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第8期1766-1771,共6页
线性局部切空间排列(LLTSA)为无监督特征约简方法,对多域故障特征集进行维数约简,会导致故障解耦不完全、故障间仍然存在混叠。针对这个问题,提出有监督线性局部切空间排列(S-LLTSA)特征约简方法,将类判别信息融入特征约简过程,实现了... 线性局部切空间排列(LLTSA)为无监督特征约简方法,对多域故障特征集进行维数约简,会导致故障解耦不完全、故障间仍然存在混叠。针对这个问题,提出有监督线性局部切空间排列(S-LLTSA)特征约简方法,将类判别信息融入特征约简过程,实现了数据集本征结构与类判别信息的有机结合,可提取出最优低维敏感故障特征向量;并通过自适应近邻分类器(ANNC)来构建故障特征向量与故障类别的对应关系。S-LLTSA特征约简有效地增加了故障特征的可辨识性,而ANNC具有优异的模式辨识能力,进一步提高了故障诊断的精度。齿轮箱故障模拟实验验证了提出的旋转机械故障诊断方法的有效性。 展开更多
关键词 旋转机械 故障诊断 维数约简 有监督线性局部切空间排列 自适应邻域分类器
在线阅读 下载PDF
基于邻域自适应LLTSA维数约简的故障诊断方法研究 被引量:3
3
作者 徐琼燕 吴印华 《机械强度》 CAS CSCD 北大核心 2018年第1期27-32,共6页
针对线性局部切空间排列(LLTSA)在进行故障特征降维时邻域大小难以确定的问题,提出了基于邻域自适应线性局部切空间排列(NA-LLTSA)维数约简的故障诊断方法。即首先从机械振动信号中全面提取出高维的混合故障特征集;其次采用基于Parzen... 针对线性局部切空间排列(LLTSA)在进行故障特征降维时邻域大小难以确定的问题,提出了基于邻域自适应线性局部切空间排列(NA-LLTSA)维数约简的故障诊断方法。即首先从机械振动信号中全面提取出高维的混合故障特征集;其次采用基于Parzen窗概率密度的邻域自适应线性局部切空间排列进行维数约简,获得低维特征;最后通过支持向量机(SVM)来建立低维特征与故障类别的对应关系,实现故障诊断。NA-LLTSA维数约简增强了故障特征的辨识能力,而SVM优异的模式识别能力能够进一步提高故障诊断精度。滚动轴承的故障诊断实例验证了所提故障诊断方法的有效性。 展开更多
关键词 故障诊断 维数约简 邻域自适应线性局部切空间排列 支持向量机
在线阅读 下载PDF
基于LCD-LLTSA的电动汽车电机轴承故障特征频率提取 被引量:2
4
作者 史素敏 杨春长 王斐 《计量学报》 CSCD 北大核心 2020年第10期1267-1272,共6页
为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺... 为有效提取出电动汽车电机轴承故障特征频率,将局部特征尺度分解、线性局部切空间排列和包络分析进行结合,用于电动汽车电机轴承的故障特征频率的提取。首先利用局部特征尺度分解对电动汽车电机轴承故障信号进行分解,得到若干个内禀尺度分量;然后利用线性局部切空间排列对由内禀尺度分量构成的矩阵进行降维处理,得到低维矩阵并以此进行信号重构;最后对重构信号进行包络谱分析,获得故障特征频率。仿真信号和实验信号的实验结果验证了方法的有效性。 展开更多
关键词 计量学 滚动轴承 故障诊断 特征频率 局部特征尺度分解 线性局部切空间排列
在线阅读 下载PDF
基于FFT和LLTSA的传动系统故障诊断研究 被引量:7
5
作者 陈晓 刘秋菊 王仲英 《机电工程》 CAS 北大核心 2022年第4期513-518,共6页
在传统的故障诊断方法中,往往先要基于先验知识求取原始振动信号的特征,并将其输入到智能分类器中进行模式识别,其中容易出现信息丢失,且依靠人为经验进行判断不够准确,针对这一问题,提出了基于快速傅里叶变换(FFT)与流行学习联合的智... 在传统的故障诊断方法中,往往先要基于先验知识求取原始振动信号的特征,并将其输入到智能分类器中进行模式识别,其中容易出现信息丢失,且依靠人为经验进行判断不够准确,针对这一问题,提出了基于快速傅里叶变换(FFT)与流行学习联合的智能故障诊断模型。首先,采用FFT变换将原始数据从时域转换到频域,获得了高维特征数据;然后,使用3种流形学习算法,即多维尺度变换(MDS)、核主成分分析(KPCA)、线性局部切空间排列(LLTSA),获得了低维表征信息;最后,基于故障诊断试验平台系统,对轴承及齿轮工作数据信息进行了获取与处理,将其数据样本输入到智能分类器中,进行了训练和测试。研究结果表明:FFT降维变换可以有效地减少人为选择因素引起的样本衰减现象,同时最近邻域估计算法可以提高智能分类器的测试准确率,使得基于FFT与流行学习的联合智能分类模型对状态数据识别率在80%以上,其中FFT+LLTSA联合智能分类模型的识别率最高可达到87%以上;该结果可验证该分类模型在机械传动系统故障检测中具有的有效性。 展开更多
关键词 机械传动系统 快速傅里叶变换 流形学习 线性局部切空间排列 智能分类
在线阅读 下载PDF
基于图像形状特征和LLTSA的故障诊断方法 被引量:12
6
作者 张前图 房立清 《振动与冲击》 EI CSCD 北大核心 2016年第9期172-177,共6页
针对滚动轴承故障诊断问题,提出了一种基于图像形状特征和线性局部切空间排列(LLTSA)的故障诊断方法。首先采用SDP(Symmetrized Dot Pattern)方法对时域信号进行变换,得到极坐标空间下的雪花图像,在分析图像特点的基础上,从图像处理的... 针对滚动轴承故障诊断问题,提出了一种基于图像形状特征和线性局部切空间排列(LLTSA)的故障诊断方法。首先采用SDP(Symmetrized Dot Pattern)方法对时域信号进行变换,得到极坐标空间下的雪花图像,在分析图像特点的基础上,从图像处理的角度初步提取出图像的形状特征;然后利用LLTSA对初步提取的特征进行维数约简以提取低维特征;最后采用支持向量机(SVM)对低维特征进行分类评估。滚动轴承的故障诊断实验表明图像形状特征能够表征轴承的状态,经LLTSA约简后特征数据的复杂度得到降低,且具有更好的聚类效果,而SVM对轴承4种状态的识别率也达到了100%,验证了该方法的有效性。 展开更多
关键词 SDP 形状特征 线性局部切空间排列 支持向量机 故障诊断
在线阅读 下载PDF
基于半监督LLTSA维数约简的故障诊断 被引量:2
7
作者 李磊 庞海 张前图 《机械强度》 CAS CSCD 北大核心 2017年第2期279-284,共6页
线性局部切空间排列(LLTSA)为无监督的维数约简方法,在对高维故障特征集进行维数约简时,不能利用部分样本的类别标签信息,使得获得的低维特征仍出现混叠的情况。针对这个问题,提出了半监督线性局部切空间排列(SS-LLTSA)的维数约简方法,... 线性局部切空间排列(LLTSA)为无监督的维数约简方法,在对高维故障特征集进行维数约简时,不能利用部分样本的类别标签信息,使得获得的低维特征仍出现混叠的情况。针对这个问题,提出了半监督线性局部切空间排列(SS-LLTSA)的维数约简方法,即利用部分标签信息来调整样本点与点之间的距离以形成新的距离矩阵,通过新的距离矩阵进行邻域构建,实现了数据本质流行结构和类别标签信息的结合,能够提取区分度更好的低维特征。此外,还通过支持向量机(SVM)来建立低维特征与故障类别的对应关系,实现故障诊断。SS-LLTSA维数约简增强了故障特征的辨识能力,而SVM优异的模式识别能力能够进一步提高故障诊断精度。滚动轴承的故障诊断实例验证了所提故障诊断方法的有效性。 展开更多
关键词 故障诊断 维数约简 半监督线性局部切空间排列 支持向量机
在线阅读 下载PDF
融合切空间度量的判别相似自适应局部线性嵌入算法
8
作者 刘庆强 鲁翩 《计算机应用》 CSCD 北大核心 2024年第S2期29-34,共6页
局部线性嵌入(LLE)算法是一种经典的流形降维算法,具有良好的特征提取能力,在故障诊断领域应用广泛。然而,LLE算法固有的缺陷例如对邻域参数选择敏感、挖掘的结构单一等问题,使得它在实际应用中提取的特征存在判别能力较差的问题。为此... 局部线性嵌入(LLE)算法是一种经典的流形降维算法,具有良好的特征提取能力,在故障诊断领域应用广泛。然而,LLE算法固有的缺陷例如对邻域参数选择敏感、挖掘的结构单一等问题,使得它在实际应用中提取的特征存在判别能力较差的问题。为此,提出判别相似性和切空间自适应邻域的局部线性嵌入(DSTANLLE)算法,并将它用于轴承故障诊断。首先使用融合切空间的新度量方式评估样本之间的局部相似性,其次构造自适应邻域图为每个样本点选择邻居,最后加入判别相似信息以提取数据的判别结构。在2个人工合成数据集和2个轴承故障数据集上的实验结果表明,DSTANLLE算法可以提取数据中区分性显著的特征,且在轴承故障诊断应用中的总体识别精度(OA)最高可达100%。 展开更多
关键词 局部线性嵌入算法 特征提取 降维 切空间度量 自适应邻域 故障诊断
在线阅读 下载PDF
基于线性局部切空间排列维数化简的故障诊断 被引量:35
9
作者 李锋 汤宝平 陈法法 《振动与冲击》 EI CSCD 北大核心 2012年第13期36-40,61,共6页
为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregres... 为实现旋转机械故障诊断方法的自动化、高精度及通用性,提出基于线性局部切空间排列(Linear LocalTangent Space Alignment,LLTSA)维数化简的故障诊断模型。首先结合经验模式分解(Empirical Mode Decomposition,EMD)和自回归(Autoregression,AR)模型系数构造全面表征不同故障特性的混合域特征集,再利用LLTSA将高维混合域特征集化简为故障区分度更好的低维特征矢量,并输入到最近邻分类器(K-nearest Neighbors Classifier,KNNC)中进行故障模式识别。所提出的诊断模型充分融合混合域特征融合在故障特征的全面提取、LLTSA在信息的有效化简及KNNC在分类决策方面的优势,实现诊断方法的自动化、高识别率及较好的通用性。用深沟球轴承不同部位、不同程度故障诊断实例验证该模型的有效性。 展开更多
关键词 混合域特征融合 线性局部切空间排列 维数化简 最近邻分类器 故障诊断
在线阅读 下载PDF
基于变分模态分解与流形学习的滚动轴承故障特征提取方法 被引量:26
10
作者 戚晓利 叶绪丹 +3 位作者 蔡江林 郑近德 潘紫微 张兴权 《振动与冲击》 EI CSCD 北大核心 2018年第23期133-140,共8页
提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;... 提出了一种基于变分模态分解(VMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先利用VMD算法分解圆柱滚子轴承不同运行状态下的振动信号,通过求取瞬时频率均值并绘制特征曲线筛选出与原始信号最为相关的几个分量;然后,提取有效模态分量的时域指标和小波包频带分解能量所构成的频域指标,两者结合初步提取高维故障特征后,再应用LTSA对故障特征进行二次提取;最后输入到K-means分类器进行故障类型识别;通过对圆柱滚子轴承故障诊断的对比实验分析,发现:(1)与时频特征+LTSA、EMD+LTSA特征提取方法相比,VMD+LTSA方法在分类效果和识别精度上更具优势;(2) LTSA算法相比较于PCA、LPP、LE、ISOMAP和LLE这5种算法,其降维后的特征故障敏感性最好。研究结果表明所提出的方法在圆柱滚子轴承故障诊断方面具有一定的优越性。 展开更多
关键词 变分模态分解 流形学习 局部切空间排列算法 故障诊断 圆柱滚动轴承
在线阅读 下载PDF
局部切空间排列算法用于轴承早期故障诊断 被引量:14
11
作者 杨庆 陈桂明 +1 位作者 何庆飞 刘鲭洁 《振动.测试与诊断》 EI CSCD 北大核心 2012年第5期831-835,867-868,共5页
提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成... 提出了一种基于经验模态分解(EMD)和局部切空间排列算法(LTSA)相结合的滚动轴承早期故障诊断方法。首先,利用经验模态分解算法分解滚动轴承不同模式下的振动信号,得到各阶本征模态分量和残余分量,提取各分量中的幅域参数和频域参数组成原始特征参数集;然后,建立基于类别可分性测度的邻域参数k选取方法,运用局部切空间排列算法实现敏感特征提取;最后,应用该方法对滚动轴承不同状态下的振动数据进行特征提取和模式识别,对比分析改进后的局部切空间排列算法与主成分分析、核主元分析以及传统局部切空间排列算法的故障模式识别能力。分析结果表明,该方法提取的滚动轴承故障特征敏感性较好,提高了故障模式识别能力,实现了滚动轴承的早期故障诊断。 展开更多
关键词 特征提取 局部切空间排列算法 经验模态分解 模式识别 滚动轴承
在线阅读 下载PDF
基于敏感特征选择与流形学习维数约简的故障诊断 被引量:42
12
作者 苏祖强 汤宝平 姚金宝 《振动与冲击》 EI CSCD 北大核心 2014年第3期70-75,共6页
针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selectio... 针对故障诊断中特征集包含非敏感特征和维数过高的问题,提出基于特征选择(Feature Selection,FS)与流形学习维数约简的故障诊断方法。提出一种改进的核空间距离测度特征选择方法(Improved Kernel Distance Measurement Feature Selection,IKDM-FS),在核空间中计算样本类间距离和类内散度,优选出使样本类间距大、类内散度小的特征,并根据特征的敏感程度对特征进行加权。通过线性局部切空间排列算法(Linear Local Tangent Space Alignment,LLTSA)对由敏感特征组成的特征子集进行特征融合,提取出对故障分类更加敏感的融合特征,并输入加权k最近邻分类器(Weighted k Nearest Neighbor Classifier,WKNNC)进行故障识别。WKNNC具有比k最近邻分类器(k Nearest Neighbor Classifier,KNNC)更加稳定的识别精度。最后,通过滚动轴承故障模拟实验验证了该方法的有效性。 展开更多
关键词 故障诊断 特征选择 改进的核空间距离测度 线性局部切空间排列 加权k最近邻分类器
在线阅读 下载PDF
基于多故障流形的旋转机械故障诊断 被引量:9
13
作者 苏祖强 汤宝平 +1 位作者 赵明航 秦毅 《振动工程学报》 EI CSCD 北大核心 2015年第2期309-315,共7页
针对旋转机械不同故障可能分布于不同故障流形,提出了基于多故障流形的旋转机械故障诊断方法。该方法分别提取每一类故障对应的故障流形,并在多故障流形上进行新增样本的故障识别。针对所需解决的低维流形提取、流形内蕴维数选取和多故... 针对旋转机械不同故障可能分布于不同故障流形,提出了基于多故障流形的旋转机械故障诊断方法。该方法分别提取每一类故障对应的故障流形,并在多故障流形上进行新增样本的故障识别。针对所需解决的低维流形提取、流形内蕴维数选取和多故障流形上的故障识别问题,分别采用线性局部切空间排列算法和免疫遗传算法来进行低维故障流形提取和流形内蕴维数选取,并通过故障样本重构误差这一新的判别准则进行故障识别。齿轮箱故障模拟实验的结果验证了此方法的有效性。 展开更多
关键词 故障诊断 旋转机械 多故障流形 局部切空间排列算法
在线阅读 下载PDF
流形学习中非线性维数约简方法概述 被引量:24
14
作者 黄启宏 刘钊 《计算机应用研究》 CSCD 北大核心 2007年第11期19-25,共7页
较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,... 较为详细地回顾了流形学习中非线性维数约简方法,分析了它们各自的优势和不足。与传统的线性维数约简方法相比较,可以发现非线性高维数据的本质维数,有利于进行维数约简和数据分析。最后展望了流形学习中非线性维数方法的未来研究方向,期望进一步拓展流形学习的应用领域。 展开更多
关键词 维数约简 流形学习 多维尺度 等距映射 拉普拉斯特征映射 局部线性嵌入 局部切空间排列
在线阅读 下载PDF
基于LTSA和MICA与PCA联合指标的过程监控方法及应用 被引量:9
15
作者 江伟 王昕 王振雷 《化工学报》 EI CAS CSCD 北大核心 2015年第12期4895-4903,共9页
独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高... 独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高斯混合分布的特点,为此提出了一种基于LTSA和MICA与PCA联合指标的过程监控的方法。首先采用局部切空间排列(LTSA)算法对样本数据进行非线性降维,然后分别用MICA和PCA方法得到非高斯与高斯统计量,对其进行加权得到新的统计量,并被用于过程监控。最后将该方法应用在田纳西-伊斯曼(TE)过程和乙烯裂解炉的过程监控中,证明了该方法的有效性。 展开更多
关键词 算法 主元分析 过程控制 非高斯 改进的独立成分分析 局部切空间排列算法 联合指标
在线阅读 下载PDF
基于扩展LLE方法的非线性系统故障诊断研究 被引量:4
16
作者 张伟 周维佳 刘晓源 《电子学报》 EI CAS CSCD 北大核心 2015年第9期1810-1815,共6页
针对非线性系统故障诊断难以解决的问题,提出了一种基于扩展局部线性嵌入映射(Locally Linear Embedding,LLE)的故障诊断方法.通过引入切空间距离代替欧氏距离,可以更加科学的满足算法近邻点局部线性的要求,从而可以更好的保留原始数据... 针对非线性系统故障诊断难以解决的问题,提出了一种基于扩展局部线性嵌入映射(Locally Linear Embedding,LLE)的故障诊断方法.通过引入切空间距离代替欧氏距离,可以更加科学的满足算法近邻点局部线性的要求,从而可以更好的保留原始数据的局部流形特征.另外,将故障状态与高维空间分布结合起来,通过确定数据点在空间超球内的分布完成故障的检测,在这个过程中将超球的确定与LLE算法中基于核函数的样本外数据扩展相结合,减少了计算量,提高了算法的实时性,从而为复杂非线性系统的故障诊断提供了一种新的有效的方法. 展开更多
关键词 故障诊断 局部线性嵌入映射 切空间距离
在线阅读 下载PDF
带标志点的LTSA算法及其在轴承故障诊断中的应用 被引量:3
17
作者 杨庆 陈桂明 +1 位作者 江良洲 何庆飞 《振动工程学报》 EI CSCD 北大核心 2012年第6期732-738,共7页
针对非监督式流形学习算法面临的增量式学习问题,提出一种带标志点的增量式局部切空间排列算法。该方法在局部切空间排列算法的基础上,利用最小角度回归算法从原始训练样本中选取标志点,以选取的标志点和新增样本建立所有样本的全局坐... 针对非监督式流形学习算法面临的增量式学习问题,提出一种带标志点的增量式局部切空间排列算法。该方法在局部切空间排列算法的基础上,利用最小角度回归算法从原始训练样本中选取标志点,以选取的标志点和新增样本建立所有样本的全局坐标矩阵,利用原始样本低维嵌入坐标和全局坐标矩阵对新增样本的低维嵌入坐标进行估计,并采用全局坐标矩阵特征值迭代方法更新所有样本的低维嵌入坐标。滚动轴承4种不同状态振动数据样本的增量式识别结果表明,本方法在实现局部切空间排列算法增量式学习的基础上,保持了对滚动轴承不同状态样本较高的类别可分性测度。 展开更多
关键词 局部切空间排列算法 最小角度回归算法 增量式学习 模式识别 滚动轴承
在线阅读 下载PDF
判别式正交线性局部切空间排列故障辨识 被引量:4
18
作者 李锋 赵洁 +1 位作者 王家序 丁行武 《计算机集成制造系统》 EI CSCD 北大核心 2014年第1期173-181,共9页
针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自... 针对现有旋转机械故障诊断模式难以实现自动化、高精度和泛化性的关键问题,提出基于判别式正交线性局部切空间排列特征约简的故障辨识方法。该方法首先构造全面表征不同故障特性的时、频域特征集,再利用DOLLTSA将高维时、频域特征集自动约简为区分度更好的低维特征矢量,并输入到K-近邻分类器中进行故障模式辨识。时、频域特征融集可较全面准确地反映旋转机械的故障特征;DOLLTSA综合利用局部几何结构和类判别信息进行流形解耦,并采用谱回归法和子空间正交化处理来优化低维嵌入子空间,提高了故障辨识精度。深沟球轴承故障诊断实例和空间轴承寿命状态辨识实例验证了所提方法的有效性。 展开更多
关键词 时、频域特征集 判别式正交线性局部切空间排列 特征约简 流形学习 故障辨识
在线阅读 下载PDF
基于几何距离摄动的局部切空间排列算法 被引量:4
19
作者 杨安平 陈松乔 胡鹏 《计算机工程与应用》 CSCD 北大核心 2011年第29期168-170,204,共4页
局部切空间排列算法(Local Tangent Space Alignment)是一种具有严格数学推理的流形学习算法,能有效地学习出高维数据的低维嵌入坐标,但也存在一些不足,如对近邻点的选取依赖性较强、不适应处理高曲率分布、稀疏分布数据源。针对这些缺... 局部切空间排列算法(Local Tangent Space Alignment)是一种具有严格数学推理的流形学习算法,能有效地学习出高维数据的低维嵌入坐标,但也存在一些不足,如对近邻点的选取依赖性较强、不适应处理高曲率分布、稀疏分布数据源。针对这些缺点,提出了一种基于几何距离摄动的局部切空间排列算法。利用几何摄动条件把样本空间划分为一组线性分块的组合,在每一个线性块上应用LTSA算法完成降维。实验结果表明了该算法的有效性。 展开更多
关键词 降维 局部切空间排列 流形 几何摄动 最大线性块
在线阅读 下载PDF
黎曼核局部线性编码 被引量:1
20
作者 姜伟 毕婷婷 +1 位作者 李克秋 杨炳儒 《软件学报》 EI CSCD 北大核心 2015年第7期1812-1823,共12页
最近的研究表明:在许多计算机视觉任务中,将对称正定矩阵表示为黎曼流形上的点能够获得更好的识别性能.然而,已有大多数算法仅由切空间局部逼近黎曼流形,不能有效地刻画样本分布.受核方法的启发,提出了一种新的黎曼核局部线性编码方法,... 最近的研究表明:在许多计算机视觉任务中,将对称正定矩阵表示为黎曼流形上的点能够获得更好的识别性能.然而,已有大多数算法仅由切空间局部逼近黎曼流形,不能有效地刻画样本分布.受核方法的启发,提出了一种新的黎曼核局部线性编码方法,并成功地应用于视觉分类问题.首先,借助于最近所提出的黎曼核,把对称正定矩阵映射到再生核希尔伯特空间中,通过局部线性编码理论建立稀疏编码和黎曼字典学习数学模型;其次,结合凸优化方法,给出了黎曼核局部线性编码的字典学习算法;最后,构造一个迭代更新算法优化目标函数,并且利用最近邻分类器完成测试样本的鉴别.在3个视觉分类数据集上的实验结果表明,该算法在分类精度上获得了相当大的提升. 展开更多
关键词 黎曼流形 对称正定矩阵 切空间 局部约束线性编码 稀疏表示
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部